【題目】已知命題 p:x∈R,x>2,那么命題¬p為(
A.x∈R,x<2
B.x∈R,x≤2
C.x∈R,x≤2
D.x∈R,x<2

【答案】B
【解析】解:因為全稱命題的否定是特稱命題,所以:命題 p:x∈R,x>2,那么命題¬p為:x∈R,x≤2. 故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“點P的軌跡方程為y=|x|”是“點P到兩條坐標(biāo)軸距離相等”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.不充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義新運算⊕:當(dāng)a≥b時,a⊕b=a;當(dāng)a<b時,a⊕b=b2 , 則函數(shù)f(x)=(1⊕x)x﹣(2⊕x),x∈[﹣2,2]的最大值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

若一個平面經(jīng)過另一個平面的垂線,那么這兩個平面相互垂直;

若一個平面內(nèi)的兩條直線與另一個平面都平行,那么這兩個平面相互平行;

若兩條平行直線中的一條垂直于直線m,那么另一條直線也與直線m垂直;

若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.

其中,真命題是________(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)f(x)中,滿足“對任意x1 , x2∈(﹣∞,0),當(dāng)x1<x2時,都有f(x1)<f(x2)”的函數(shù)是(
A.f(x)=﹣x+1
B.f(x)=x2﹣1
C.f(x)=2x
D.f(x)=ln(﹣x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p1:函數(shù)y=2x﹣2x在R上為增函數(shù),p2:函數(shù)y=2x+2x在R上為減函數(shù),則在命題q1:p1∨p2 , q2:p1∧p2;q3:(¬p1)∨p2;q4:p1∨(¬p2);其中為真命題的是(
A.q1和q3
B.q2和q3
C.q1 和q4
D.q2和q4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列x,3x+3,6x+6,…的第四項等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2﹣mx+m2﹣19=0},B={x|x2﹣5x+6=0},C={2,﹣4},若A∩B≠,A∩C=,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年高校招生實施強基計劃,其主要選拔培養(yǎng)有志于服務(wù)國家重大戰(zhàn)略需求且綜合素質(zhì)優(yōu)秀或基礎(chǔ)學(xué)科拔尖的學(xué)生,聚焦高端芯片與軟件、智能科技、新材料、先進制造和國家安全等關(guān)鍵領(lǐng)域以及國家人才緊缺的人文社會科學(xué)領(lǐng)域,有36所大學(xué)首批試點強基計劃某中學(xué)積極應(yīng)對,高考前進行了一次模擬筆試,甲、乙、丙、丁四人參加,按比例設(shè)定入圍線,成績公布前四人分別做猜測如下:

甲猜測:我不會入圍,丙一定入圍;乙猜測:入圍者必在甲、丙、丁三人中

丙猜測:乙和丁中有一人入圍;丁猜測:甲的猜測是對的

成績公布后,四人中恰有兩人預(yù)測正確,且恰有兩人入圍,則入圍的同學(xué)是(

A.甲和丙B.乙和丁C.甲和丁D.乙和丙

查看答案和解析>>

同步練習(xí)冊答案