已知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240235489351165.png)
的離心率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023548951466.png)
,短軸一個端到右焦點(diǎn)的距離為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023548966345.png)
.
(Ⅰ)求橢圓C的方程:
(Ⅱ)設(shè)直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023548982283.png)
與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023548982283.png)
的距離為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549013460.png)
,求△AOB面積的最大值.
試題分析:(Ⅰ)屬于橢圓的基本題型.通過建立
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549075450.png)
的方程組,求得橢圓方程為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549029630.png)
.
(Ⅱ)解答本小題,應(yīng)注意討論
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549107473.png)
軸和當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549107384.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549138266.png)
軸不垂直的兩種情況.在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549107384.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549138266.png)
軸不垂直設(shè)直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549107384.png)
的方程為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549185528.png)
.利用坐標(biāo)原點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549200184.png)
到直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023548982283.png)
的距離為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549060453.png)
,建立
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549247337.png)
的方程.通過將直線方程與橢圓方程聯(lián)立,應(yīng)用韋達(dá)定理、弦長公式,得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549263476.png)
.應(yīng)用均值定理得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549278664.png)
.
試題解析:(Ⅰ)設(shè)橢圓的半焦距為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549325185.png)
,依題意,離心率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023548951466.png)
,短軸一個端到右焦點(diǎn)的距離為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023548966345.png)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549372823.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549419515.png)
,∴所求橢圓方程為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549029630.png)
.
(Ⅱ)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549450839.png)
.
①當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549107473.png)
軸時(shí),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549512572.png)
.
②當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549107384.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549138266.png)
軸不垂直時(shí),設(shè)直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549107384.png)
的方程為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549185528.png)
.
∵坐標(biāo)原點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549200184.png)
到直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023548982283.png)
的距離為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549060453.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549668855.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549699741.png)
把
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549185528.png)
代入橢圓方程,整理得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240235497311007.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240235497621233.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240235497773654.png)
當(dāng)且僅當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549793927.png)
時(shí)等號成立,
當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549824350.png)
時(shí),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549512572.png)
,
綜上所述
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549278664.png)
.
∴當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549871423.png)
最大時(shí),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549044464.png)
面積取最大值
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023549949858.png)
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031629747823.png)
,若實(shí)數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031629762444.png)
滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031629793922.png)
則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031629809449.png)
的最小值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024258685447.png)
的定義域?yàn)镈,如果對于任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024258700482.png)
,存在唯一的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024258716504.png)
,使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024258731842.png)
(c為常數(shù))成立,則稱函數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024258685447.png)
在D上的均值為c.下列五個函數(shù):①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024258763578.png)
②
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024258778470.png)
③
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024258794492.png)
④
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024258809477.png)
⑤
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024258825516.png)
滿足在其定義域上均值為2的所有函數(shù)的序號是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
一個籃球運(yùn)動員投籃一次得3分的概率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023224278283.png)
,得2分的概率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023224403299.png)
,不得分的概率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023224419249.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023224434671.png)
,已知他投籃一次得分的期望是2,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023224450610.png)
的最小值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在如圖所示的銳角三角形空地中,欲建一個面積最大的內(nèi)接矩形花園(陰影部分),則其邊長x為 ( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240217220822510.jpg)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知x>0,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015335912570.png)
的最大值為________________________.
查看答案和解析>>