【題目】已知首項為的等比數(shù)列不是遞減數(shù)列,其前n項和為,且成等差數(shù)列。

1)求數(shù)列的通項公式;

2)設,求數(shù)列的最大項的值與最小項的值。

【答案】1;(2)最大項的值為,最小項的值為

【解析】

試題

(1)根據(jù)成等差數(shù)列,利用等比數(shù)列通項公式和前項和公式,展開.利用等比數(shù)列不是遞減數(shù)列,可得,進而求通項.

(2)首先根據(jù)(1)得到,進而得到,但是等比數(shù)列的公比是負數(shù),所以分兩種情況:當?shù)漠?/span>n為奇數(shù)時,n的增大而減小,所以;n為偶數(shù)時,n的增大而增大,所以,然后可判斷最值.

試題解析:

1)設的公比為q。由成等差數(shù)列,得

.

,則.

不是遞減數(shù)列且,所以.

.

2)由(1)利用等比數(shù)列的前項和公式,可得得

n為奇數(shù)時,n的增大而減小,所以,

.

n為偶數(shù)時,n的增大而增大,所以,

.

綜上,對于,總有,

所以數(shù)列最大項的值為,最小值的值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知是橢圓的右焦點,直線與橢圓相切于點

1)若,求;

2)若,,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】改革開放年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強.

的值,并估計該城市駕駛員交通安全意識強的概率;

已知交通安全意識強的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;

安全意識強

安全意識不強

合計

男性

女性

合計

用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內的交通違章情況進行跟蹤調查,求至少有人得分低于分的概率.

附:其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元2019年,石室2160歲!文翁興學2160周年紀念活動于2019119日在石室中學文廟校區(qū)運動場隆重召開,會場是由一個長,寬的長方形及兩個以長方形寬為直徑的半圓相接組成,整個會場關于中軸線對稱,圖形如下.

1)若、兩位同學分別在左右兩個半圓弧上值勤,則、兩位同學在圓弧什么位置時相距最遠,距離為多少?并說明原因.

2)在(1)問的情況下,若要在主會臺后的會場邊界上關于中軸線對稱的兩點處分別放置兩個音響,為了達到最好聽覺效果,兩個音響的距離要足夠大,同時、兩位同學聽到兩個音響傳來的聲音時間差不超過0.18秒,求音響距中軸線距離約為多少時為最佳放置點.(注:不超過0.18秒以秒計算,聲音在空氣中的傳播速度為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20191017日是我國第6個“扶貧日”,某醫(yī)院開展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動,現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有( )

A.18B.20C.22D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為平行四邊形,為直角三角形且,是等邊三角形.

(1)求證:;

(2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x(lnxax)有兩個極值點,則實數(shù)a的取值范圍是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,交于點,,.

(Ⅰ)在線段上找一點,使得平面,并證明你的結論;

(Ⅱ)若,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,底面是正形,,的中點.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案