【題目】已知橢圓的左焦點與拋物線 的焦點重合,橢圓的離心率為,過點作斜率不為0的直線,交橢圓于兩點,點,且為定值.
(1)求橢圓的方程;
(2)求面積的最大值.
【答案】(1) (2)
【解析】試題分析:(1)由拋物線焦點可得c,再根據(jù)離心率可得a,即得b(2)先設(shè)直線方程x=ty+m,根據(jù)向量數(shù)量積表示,將直線方程與橢圓方程聯(lián)立方程組,結(jié)合韋達定理代入化簡可得為定值的條件,解出m;根據(jù)點到直線距離得三角形的高,利用弦公式可得底,根據(jù)面積公式可得關(guān)于t的函數(shù),最后根據(jù)基本不等式求最值
試題解析:解:(1)設(shè)F1(﹣c,0),∵拋物線y2=﹣4x的焦點坐標為(﹣1,0),且橢圓E的左焦點F與拋物線y2=﹣4x的焦點重合,∴c=1,
又橢圓E的離心率為,得a=,
于是有b2=a2﹣c2=1.故橢圓Γ的標準方程為:.
(2)設(shè)A(x1,y1),B(x2,y2),直線l的方程為:x=ty+m,
由整理得(t2+2)y2+2tmy+m2﹣2=0
,,
,
=
=(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣=.
要使為定值,則,解得m=1或m=(舍)
當m=1時,|AB|=|y1﹣y2|=,
點O到直線AB的距離d=,
△OAB面積s==.
∴當t=0,△OAB面積的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在點處的切線方程;
(2)求證:存在唯一的,使得曲線在點處的切線的斜率為;
(3)比較與的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“累積凈化量()”是空氣凈化器質(zhì)量的一個重要衡量指標,它是指空氣凈化器從開始使用到凈化效率為時對顆粒物的累積凈化量,以克表示.根據(jù)《空氣凈化器》國家標準,對空氣凈化器的累計凈化量()有如下等級劃分:
累積凈化量(克) | 12以上 | |||
等級 |
為了了解一批空氣凈化器(共2000臺)的質(zhì)量,隨機抽取臺機器作為樣本進行估計,已知這臺機器的累積凈化量都分布在區(qū)間中.按照均勻分組,其中累積凈化量在的所有數(shù)據(jù)有: 和,并繪制了如下頻率分布直方圖:
(1)求的值及頻率分布直方圖中的值;
(2)以樣本估計總體,試估計這批空氣凈化器(共2000臺)中等級為的空氣凈化器有多少臺?
(3)從累積凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點與拋物線 的焦點重合,橢圓的離心率為,過點作斜率不為0的直線,交橢圓于兩點,點,且為定值.
(1)求橢圓的方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于曲線 給出下列四個命題:
(1)曲線有兩條對稱軸,一個對稱中心
(2)曲線上的點到原點距離的最小值為1
(3)曲線的長度滿足
(4)曲線所圍成圖形的面積 滿足
上述命題正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面是菱形的四棱錐中, 平面, ,點分別為的中點,設(shè)直線與平面交于點.
(1)已知平面平面,求證: .
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點分別為, 若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點.
(1)求橢圓的方程;
(2)若點是點在軸上的垂足,延長交橢圓于,求證: 三點共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心的中心在中心在坐標原點,焦點在軸上且過點,離心率是.
()求橢圓的標準方程.
()直線過點且與橢圓交于、兩點,若,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com