【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(Ⅱ)若直線與曲線相交于 兩點(diǎn),且,求直線的傾斜角的值.

【答案】(Ⅰ);(Ⅱ) .

【解析】試題分析:可以利用極坐標(biāo)與直角坐標(biāo) 互化的化式,求出曲線C的直角坐標(biāo)方程;
先將直線的參數(shù)方程是,(t是參數(shù))化成普通方程,再求出弦心距,利用勾股定理求出弦長,也可以直接利用直線的參數(shù)方程和圓的普通方程聯(lián)解,求出對應(yīng)的參數(shù), 的關(guān)系式,利用,得到α的三角方程,解方程得到α的值,要注意角α范圍.

試題解析:

(Ⅰ)有,, ,

∴曲線的直角坐標(biāo)方程為,即

(Ⅱ)將代入圓的方程得

化簡得,

設(shè) 兩點(diǎn)對應(yīng)的參數(shù)分別為, ,則

, ,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),若f(x)滿足 >0,f(2﹣x)=f(x)e22x則下列判斷一定正確的是(
A.f(1)<f(0)
B.f(3)>e3f(0)
C.f(2)>ef(0)
D.f(4)<e4f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,短軸長為 ,過右焦點(diǎn)F的直線l與C相交于A,B兩點(diǎn).O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)若點(diǎn)P在橢圓C上,且 = + ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=ax2+bx(a<0)通過點(diǎn)(1,2),且其圖象與y=﹣x2+2x的圖象有二個交點(diǎn)(如圖所示).

(1)求y=ax2+bx與y=﹣x2+2x所圍成的面積S與a的函數(shù)關(guān)系;
(2)當(dāng)a,b為何值時,S取得最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計(jì)

10

55

合計(jì)


(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).

P(K2≥k)

0.05

0.01

k

3.841

6.635

附:K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在區(qū)間上的最大值;

(2)若是函數(shù)圖像上不同的三點(diǎn),且,試判斷之間的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=f(x)的定義域?yàn)镈,若對于任意x1、x2∈D,當(dāng)x1+x2=2a時,恒有f(x1)+f(x2)=2b,則稱點(diǎn)(a,b)為函數(shù)y=f(x)圖象的對稱中心.研究函數(shù)f(x)=x+sinπx﹣3的某一個對稱中心,并利用對稱中心的上述定義,可得到f( )+f( )+…+f( )+f( )的值為(
A.4027
B.﹣4027
C.8054
D.﹣8054

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線在點(diǎn)處的切線與曲線切于點(diǎn),求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若存在x1 , x2∈R且x1≠x2 , 使得f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案