【題目】已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大小;
(2)若b=,求a+c的取值范圍.
【答案】見(jiàn)解析
【解析】(1)∵m=(cos B,cos C),n=(2a+c,b),且m⊥n,
∴(2a+c)cos B+bcos C=0,
∴cos B(2sin A+sin C)+sin Bcos C=0,
∴2cos Bsin A+cos Bsin C+sin Bcos C=0,
即2cos Bsin A=-sin(B+C)=-sin A,
∴cos B=-.
∵0°<B<180°,
∴B=120°.
(2)由余弦定理,得b2=a2+c2-2accos 120°=a2+c2+ac=(a+c)2-ac≥(a+c)2-2= (a+c)2,當(dāng)且僅當(dāng)a=c時(shí)取等號(hào),
∴(a+c)2≤4,∴a+c≤2,
又a+c>b=,∴a+c∈(,2].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中且.
(1)判斷函數(shù)的奇偶性,并說(shuō)明理由;
(2)證明:當(dāng)時(shí),函數(shù)在上為減函數(shù);
(3)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分12分)某公司的廣告費(fèi)支出x與銷售額y(單位:萬(wàn)元)之間有下列對(duì)應(yīng)數(shù)據(jù)
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點(diǎn)圖,并判斷廣告費(fèi)與銷售額是否具有相關(guān)關(guān)系;
(2)根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出y與x的回歸方程;
(3)預(yù)測(cè)銷售額為115萬(wàn)元時(shí),大約需要多少萬(wàn)元廣告費(fèi)。
參考公式:回歸方程為其中,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某單位用2160萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該空地上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測(cè)算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費(fèi)用為560+48x(單位:元).
(1)寫出樓房平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;
(2)該樓房應(yīng)建造多少層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?
(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=購(gòu)地總費(fèi)用/建筑總面積)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC的三個(gè)內(nèi)角為A,B,C,m=(sin B+sin C,0),n=(0,sin A)且
|m|2-|n|2=sin Bsin C.
(1)求角A的大小
(2)求sin B+sin C的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義在上的函數(shù),若存在距離為的兩條直線和,使得對(duì)任意都有恒成立,則稱函數(shù)有一個(gè)寬度為的通道,給出下列函數(shù):①;②;③;④.其中在區(qū)間上通道寬度可以為1的函數(shù)的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某林區(qū)的森林蓄積量每年比上一年平均增長(zhǎng)9.5%,要增長(zhǎng)到原來(lái)的x倍,需經(jīng)過(guò)y年,則函數(shù)y=f(x)的圖像大致為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線,與,各有一個(gè)交點(diǎn),當(dāng)時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng),這兩個(gè)交點(diǎn)重合.
(1)分別說(shuō)明,是什么曲線,并求出與的值;
(2)設(shè)當(dāng)時(shí),與,的交點(diǎn)分別為,當(dāng),與,的交點(diǎn)分別為,求四邊形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com