【題目】選修4-4:坐標(biāo)系與參數(shù)方程選講

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸建立極坐標(biāo)系, 已知曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為

(Ⅰ)寫(xiě)出曲線和直線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線過(guò)點(diǎn)與曲線交于不同兩點(diǎn)的中點(diǎn)為,的交點(diǎn)為,求

【答案】(Ⅰ)C: ;直線的直角坐標(biāo)方程 (Ⅱ)8

【解析】

(Ⅰ)由極坐標(biāo)方程與直角坐標(biāo)方程的互化公式可直接得出結(jié)果;

(Ⅱ)先寫(xiě)出直線的參數(shù)方程,代入曲線的普通方程,得到,再由直線的參數(shù)方程代入,得到,進(jìn)而可得出結(jié)果.

(Ⅰ)曲線的直角坐標(biāo)方程為:;

的直角坐標(biāo)方程為:

(Ⅱ)直線的參數(shù)方程為參數(shù)),

將其代入曲線的普通方程并整理得,

設(shè)兩點(diǎn)的參數(shù)分別為,則

因?yàn)?/span>的中點(diǎn),故點(diǎn)的參數(shù)為

設(shè)點(diǎn)的參數(shù)分別為,把代入整理得

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)三位數(shù)的十位上的數(shù)字比個(gè)位和百位上的數(shù)字都大,則稱這個(gè)三位數(shù)為“凸數(shù)”(如132),現(xiàn)從集合中任取3個(gè)互不相同的數(shù)字,排成一個(gè)三位數(shù),則這個(gè)三位數(shù)是“凸數(shù)”的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,以原點(diǎn)為圓心,為半徑的定圓,與過(guò)原點(diǎn)且斜率為的動(dòng)直線交于、兩點(diǎn),在軸正半軸上有一個(gè)定點(diǎn),、、三點(diǎn)構(gòu)成三角形,求:

1的面積的表達(dá)式,并求出的取值范圍;

2的外接圓的面積的表達(dá)式,并求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正整數(shù)數(shù)列的前項(xiàng)和為,前項(xiàng)積,若,則稱數(shù)列為“數(shù)列”.

(1)判斷下列數(shù)列是否是數(shù)列,并說(shuō)明理由;①2,2,48;②8,2440,56

(2)若數(shù)列數(shù)列,且.;

(3)是否存在等差數(shù)列是數(shù)列?請(qǐng)闡述理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若的兩個(gè)極值點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面四邊形中,,中點(diǎn),,將沿對(duì)角線折起至,使平面平面,則四面體中,下列結(jié)論不正確的是( )

A. 平面

B. 異面直線所成的角為

C. 異面直線所成的角為

D. 直線與平面所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,過(guò)其焦點(diǎn)作斜率為1的直線交拋物線,兩點(diǎn),且線段的中點(diǎn)的縱坐標(biāo)為4.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)若不過(guò)原點(diǎn)且斜率存在的直線與拋物線相交于、兩點(diǎn),且.求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓經(jīng)過(guò)點(diǎn).設(shè)橢圓的左頂點(diǎn)為,右焦點(diǎn)為,右準(zhǔn)線與軸交于點(diǎn),且為線段的中點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若過(guò)點(diǎn)的直線與橢圓相交于另一點(diǎn)軸上方),直線與橢圓相交于另一點(diǎn),且直線垂直,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的焦點(diǎn)為,是拋物線上的兩個(gè)動(dòng)點(diǎn),線段的中點(diǎn)為,過(guò)作拋物線準(zhǔn)線的垂線,垂足為,若,則的最大值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案