【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,直線的參數(shù)方程為,圓的極坐標(biāo)方程為.
(1)求直線的普通方程與圓的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.
【答案】(1)直線的普通方程為: ,C的直角坐標(biāo)方程為;(2).
【解析】試題分析:(1)消去參數(shù)可得直線的普通方程,由公式可化極坐標(biāo)方程為直角坐標(biāo)方程;(2)直線的參數(shù)方程是過點(diǎn)的標(biāo)準(zhǔn)參數(shù)方程,因此把直線參數(shù)方程代入圓的直角坐標(biāo)方程,方程的解,則,由韋達(dá)定理可得.
試題解析:(1)直線的普通方程為: ,
,所以.
所以曲線C的直角坐標(biāo)方程為(或?qū)懗?/span>)..
(2)點(diǎn)P(2,1)在直線上,且在圓C內(nèi),把代入,得,設(shè)兩個(gè)實(shí)根為,則,即異號(hào).
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程是(θ為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為:
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)直線θ=與直線l交于點(diǎn)M,與曲線C交于P,Q兩點(diǎn),已知|OM||OP||OQ)=10,求t的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與二次曲線有4個(gè)不同的交點(diǎn),由下面的草圖可以看出,下面三個(gè)結(jié)論是成立的,請(qǐng)給出證明.
(1).兩曲線的4個(gè)交點(diǎn)中,至少有兩個(gè)交點(diǎn)位于軸的下方;
(2).拋物線必與軸有兩個(gè)不同的交點(diǎn),記為,,;
(3).兩曲線的4個(gè)交點(diǎn)中,必存在一點(diǎn),使.
注.對(duì)、、的不同取值會(huì)有無數(shù)個(gè)圖形,此處僅就,各給出一個(gè)示意圖,同時(shí)也就限制“由圖看出”的解答.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABCA1B1C1中(側(cè)棱與底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1=,D 是A1B1的中點(diǎn).
(1)求證:C1D⊥平面AA1B1B;
(2)當(dāng)點(diǎn)F 在BB1上的什么位置時(shí),AB1⊥平面C1DF ?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為倡導(dǎo)全體學(xué)生為特困學(xué)生捐款,舉行“一元錢,一片心,誠(chéng)信用水”活動(dòng),學(xué)生在購(gòu)水處每領(lǐng)取一瓶礦泉水,便自覺向捐款箱中至少投入一元錢。現(xiàn)統(tǒng)計(jì)了連續(xù)5天的售出和收益情況,如下表:
售出水量x(單位:箱) | 7 | 6 | 6 | 5 | 6 |
收益y(單位:元) | 165 | 142 | 148 | 125 | 150 |
(Ⅰ) 若x與y成線性相關(guān),則某天售出8箱水時(shí),預(yù)計(jì)收益為多少元?
(Ⅱ) 期中考試以后,學(xué)校決定將誠(chéng)信用水的收益,以獎(jiǎng)學(xué)金的形式獎(jiǎng)勵(lì)給品學(xué)兼優(yōu)的特困生,規(guī)定:特困生考入年級(jí)前200名,獲一等獎(jiǎng)學(xué)金500元;考入年級(jí)201—500 名,獲二等獎(jiǎng)學(xué)金300元;考入年級(jí)501名以后的特困生將不獲得獎(jiǎng)學(xué)金。甲、乙兩名學(xué)生獲一等獎(jiǎng)學(xué)金的概率均為,獲二等獎(jiǎng)學(xué)金的概率均為,不獲得獎(jiǎng)學(xué)金的概率均為.
⑴在學(xué)生甲獲得獎(jiǎng)學(xué)金條件下,求他獲得一等獎(jiǎng)學(xué)金的概率;
⑵已知甲、乙兩名學(xué)生獲得哪個(gè)等第的獎(jiǎng)學(xué)金是相互獨(dú)立的,求甲、乙兩名學(xué)生所獲得獎(jiǎng)學(xué)金總金額X 的分布列及數(shù)學(xué)期望。
附: , 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為實(shí)數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)若存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)都有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1到9的九個(gè)數(shù)字中取三個(gè)偶數(shù)四個(gè)奇數(shù),試問:
①能組成多少個(gè)沒有重復(fù)數(shù)字的七位數(shù)?
②上述七位數(shù)中三個(gè)偶數(shù)排在一起的有幾個(gè)?
③在①中的七位數(shù)中,偶數(shù)排在一起、奇數(shù)也排在一起的有幾個(gè)?
④在①中任意兩偶數(shù)都不相鄰的七位數(shù)有幾個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、為平面上兩個(gè)點(diǎn)集,滿足,,且任意三點(diǎn)不共線.在集合和間各連若干條線段,每條線段均一個(gè)端點(diǎn)在集合中,另一個(gè)端點(diǎn)在集合中,且任意兩點(diǎn)間至多連一條線段,記所有線段構(gòu)成的集合為.若集合滿足對(duì)于集合或中任意一點(diǎn)均至少連出條線段,則稱集合是“一好的”.試確定的最大值,使得去掉任意一條線段,集合均不是一好的.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com