【題目】電視臺(tái)播放甲、乙兩套連續(xù)劇,每次播放連續(xù)劇時(shí),需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時(shí),連續(xù)劇播放時(shí)長(zhǎng)、廣告播放時(shí)長(zhǎng)、收視人次如下表所示:
連續(xù)劇 | 連續(xù)劇播放時(shí)長(zhǎng)/min | 廣告播放時(shí)長(zhǎng)/min | 收視人次/萬人 |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
電視臺(tái)每周安排的甲、乙連續(xù)劇的總播放時(shí)長(zhǎng)不多于,廣告的總播放時(shí)長(zhǎng)不少于,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍,分別用,表示每周計(jì)劃播出的甲、乙兩套連續(xù)劇的次數(shù),要使總收視人次最多,則電視臺(tái)每周播出甲、乙兩套連續(xù)劇的次數(shù)分別為( )
A.6,3B.5,2C.4,5D.2,7
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系x-O-y中,已知曲線E:(t為參數(shù))
(1)在極坐標(biāo)系O-x中,若A、B、C為E上按逆時(shí)針排列的三個(gè)點(diǎn),△ABC為正三角形,其中A點(diǎn)的極角θ=,求B、C兩點(diǎn)的極坐標(biāo);
(2)在直角坐標(biāo)系x-O-y中,已知?jiǎng)狱c(diǎn)P,Q都在曲線E上,對(duì)應(yīng)參數(shù)分別為t=α與t=2α (0<α<2π),M為PQ的中點(diǎn),求 |MO| 的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)滿足:對(duì)于其定義域內(nèi)的任何一個(gè)自變量,都有函數(shù)值,則稱函數(shù)在上封閉.
(1)若下列函數(shù):,的定義域?yàn)?/span>,試判斷其中哪些在上封閉,并說明理由.
(2)若函數(shù)的定義域?yàn)?/span>,是否存在實(shí)數(shù),使得在其定義域上封閉?若存在,求出所有的值,并給出證明;若不存在,請(qǐng)說明理由.
(3)已知函數(shù)在其定義域上封閉,且單調(diào)遞增,若且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐S﹣ABCD中,四邊形ABCD為平行四邊形,BA⊥AC,SA⊥AD,SC⊥CD.
(Ⅰ)求證:AC⊥SB;
(Ⅱ)若AB=AC=SA=3,E為線段BC的中點(diǎn),F為線段SB上靠近B的三等分點(diǎn),求直線SC與平面AEF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種熱飲需用開水沖泡,其基本操作流程如下:①先將水加熱到100,水溫與時(shí)間近似滿足一次函數(shù)關(guān)系;②用開水將熱飲沖泡后在室溫下放置,溫度與時(shí)間近似滿足函數(shù)的關(guān)系式為 (為常數(shù)), 通常這種熱飲在40時(shí),口感最佳,某天室溫為時(shí),沖泡熱飲的部分?jǐn)?shù)據(jù)如圖所示,那么按上述流程沖泡一杯熱飲,并在口感最佳時(shí)飲用,最少需要的時(shí)間為
A. 35 B. 30
C. 25 D. 20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中直線與拋物線C:交于A,B兩點(diǎn),且.
求C的方程;
若D為直線外一點(diǎn),且的外心M在C上,求M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.
(Ⅱ)求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓C:+=1(a>b>0)的離心率為,橢圓上動(dòng)點(diǎn)P到一個(gè)焦點(diǎn)的距離的最小值為3(-1).
(1) 求橢圓C的標(biāo)準(zhǔn)方程;
(2) 已知過點(diǎn)M(0,-1)的動(dòng)直線l與橢圓C交于A,B兩點(diǎn),試判斷以線段AB為直徑的圓是否恒過定點(diǎn),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】漁民出海打魚,為了保證獲得的魚新鮮,魚被打上岸后,要在最短的時(shí)間內(nèi)將其分揀、冷藏,若不及時(shí)處理,打上來的魚很快地失去新鮮度(以魚肉內(nèi)的三甲胺量的多少來確定魚的新鮮度.三甲胺是一種揮發(fā)性堿性氨,是氨的衍生物,它是由細(xì)菌分解產(chǎn)生的.三甲胺量積聚就表明魚的新鮮度下降,魚體開始變質(zhì)進(jìn)而腐敗).已知某種魚失去的新鮮度與其出海后時(shí)間(分)滿足的函數(shù)關(guān)系式為.若出海后10分鐘,這種魚失去的新鮮度為10%,出海后20分鐘,這種魚失去的新鮮度為20%,那么若不及時(shí)處理,打上來的這種魚在多長(zhǎng)時(shí)間后開始失去全部新鮮度(已知,結(jié)果取整數(shù))( )
A.33分鐘B.40分鐘C.43分鐘D.50分鐘
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com