【題目】某同學大學畢業(yè)后,決定利用所學專業(yè)進行自主創(chuàng)業(yè),經(jīng)過市場調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬元,每生產(chǎn)萬件,需另投入流動成本萬元,當年產(chǎn)量小于萬件時,(萬元);當年產(chǎn)量不小于7萬件時,(萬元).已知每件產(chǎn)品售價為6元,假若該同學生產(chǎn)的商品當年能全部售完.
(1)寫出年利潤(萬年)關于年產(chǎn)量(萬件)的函數(shù)解析式;(注:年利潤=年銷售收入-固定成本-流動成本)
(2)當年產(chǎn)量約為多少萬件時,該同學的這一產(chǎn)品所獲年利潤最大?最大年利潤是多少?
(取).
【答案】(1) (2)當年產(chǎn)量約為萬件,該同學的這一產(chǎn)品所獲年利潤最大,最大利潤為萬元
【解析】
(1)根據(jù)年利潤=年銷售收入-固定成本-流動成本,分和兩種情況,得到與x的關系式即可;(2)求出兩種情況的最大值,作比較即可得到本題答案.
(1)產(chǎn)品售價為元,則萬件產(chǎn)品銷售收入為萬元.
依題意得,當時,,
當時,,
;
(2)當時,,
當時,的最大值為(萬元),
當時,,
當時,單調(diào)遞增,當單調(diào)遞減,
當時,取最大值(萬元),
當時,取得最大值萬元,
即當年產(chǎn)量約為萬件,該同學的這一產(chǎn)品所獲年利潤最大,最大利潤為萬元.
科目:高中數(shù)學 來源: 題型:
【題目】設n 為不小于3的正整數(shù),集合,對于集合中的任意元素,記
(Ⅰ)當時,若,請寫出滿足的所有元素
(Ⅱ)設且,求的最大值和最小值;
(Ⅲ)設S是的子集,且滿足:對于S中的任意兩個不同元素,有成立,求集合S中元素個數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設有半徑為的圓形村落, 兩人同時從村落中心出發(fā), 向北直行, 先向東直行,出村后不久,改變前進方向,沿著與村落周界相切的直線前進,后來恰與相遇.設兩人速度一定,其速度比為,問兩人在何處相遇?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是拋物線上一點,經(jīng)過點的直線與拋物線交于、兩點(不同于點),直線、分別交直線于點、.
(1)求拋物線方程及其焦點坐標;
(2)求證:以為直徑的圓恰好經(jīng)過原點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 據(jù)觀測統(tǒng)計,某濕地公園某種珍稀鳥類的現(xiàn)有個數(shù)約只,并以平均每年的速度增加.
(1)求兩年后這種珍稀鳥類的大約個數(shù);
(2)寫出(珍稀鳥類的個數(shù))關于(經(jīng)過的年數(shù))的函數(shù)關系式;
(3)約經(jīng)過多少年以后,這種鳥類的個數(shù)達到現(xiàn)有個數(shù)的倍或以上?(結果為整數(shù))(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱的側面是平行四邊形,,平面平面,且分別是的中點.
(Ⅰ)求證:;
(Ⅱ)求證:平面;
(Ⅲ)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐中,底面為菱形,,平面,、分別是、上的中點,直線與平面所成角的正弦值為,點在上移動.
(Ⅰ)證明:無論點在上如何移動,都有平面平面;
(Ⅱ)求點恰為的中點時,二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當時,求函數(shù)的極小值;
(Ⅱ)當時,討論的單調(diào)性;
(Ⅲ)若函數(shù)在區(qū)間上有且只有一個零點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com