【題目】已知函數(shù)在上不具有單調(diào)性.
(1)求實數(shù)的取值范圍;
(2)若是的導函數(shù),設(shè),試證明:對任意兩個不相等正數(shù),不等式恒成立.
【答案】(1)實數(shù)的取值范圍;(2)見解析.
【解析】試題分析:(1)求函數(shù)在x∈(2,+∞)上不具有單調(diào)性時實數(shù)a的取值范圍,可以考慮求導函數(shù)的方法,則導函數(shù)在(2,+∞)上即有正也有負,即有零點,求出范圍即可.
(2)由(1)求出g(x)的函數(shù)表達式,然后求導函數(shù)h(x),通過判斷h(x)的單調(diào)性求出然后可以得到函數(shù)是增函數(shù),對任意兩個不相等正數(shù)x1、x2,即可得到不等式成立.
試題解析:
(1)
在上不具有單調(diào)性, 在上有正也有負也有,即二次函數(shù)在上有零點
是對稱軸是,開口向上的拋物線, 的實數(shù)的取值范圍
(2)由(1),
,
,
設(shè)
在是減函數(shù),在增函數(shù),當時, 取最小值
從而,函數(shù)是增函數(shù),
是兩個不相等正數(shù),不妨設(shè),則
,即
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以原點為極點, 軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線的極坐標方程為,直線的參數(shù)方程為
(為參數(shù), 為直線的傾斜角).
(1)寫出直線的普通方程和曲線的直角坐標方程;
(2)若直線與曲線有唯一的公共點,求角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中山某學校的場室統(tǒng)一使用“歐普照明”的一種燈管,已知這種燈管使用壽命(單位:月)服從正態(tài)分布,且使用壽命不少于個月的概率為,使用壽命不少于個月的概率為.
(1)求這種燈管的平均使用壽命;
(2)假設(shè)一間課室一次性換上支這種新燈管,使用個月時進行一次檢查,將已經(jīng)損壞的燈管換下(中途不更換),求至少兩支燈管需要更換的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,通項滿足(是常數(shù), 且).
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)當時,證明;
(Ⅲ)設(shè)函數(shù), ,是否存在正整數(shù),使對都成立?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是周期為4的偶函數(shù),當時, ,則不等式在區(qū)間上的解集為( )
A. (1,3) B. (-1,1) C. (-1,0)∪(1,3) D. (-1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【選修4-4:坐標系與參數(shù)方程】
極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩神坐標系中的長度單位相同.已知曲線的極坐標方程為, .
(Ⅰ)求曲線的直角坐標方程;
(Ⅱ)在曲線上求一點,使它到直線: (為參數(shù))的距離最短,寫出點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓與軸負半軸相交于點,與軸正半軸相交于點.
(1)若過點的直線被圓截得的弦長為,求直線的方程;
(2)若在以為圓心半徑為的圓上存在點,使得 (為坐標原點),求的取值范圍;
(3)設(shè)是圓上的兩個動點,點關(guān)于原點的對稱點為,點關(guān)于軸的對稱點為,如果直線與軸分別交于和,問是否為定值?若是求出該定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com