【題目】已知在直角坐標(biāo)系xOy中,直線 的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線C的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)P是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線的距離d的取值范圍.

【答案】;.

【解析】

試題()應(yīng)用代入法,將代入,即可得到直線l的普通方程;將,代入曲線C的極坐標(biāo)方程,即得曲線C的直角坐標(biāo)方程;()由圓的參數(shù)方程設(shè)出點(diǎn),根據(jù)點(diǎn)到直線的距離公式得到的式子,并應(yīng)用三角函數(shù)的兩角和的余弦公式,以及三角函數(shù)的值域化簡,即可得到的范圍.

試題解析:()直線的普通方程為:;

曲線的直角坐標(biāo)方程為---4

)設(shè)點(diǎn),則

所以的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為抑制房價(jià)過快上漲和過度炒作,各地政府響應(yīng)中央號召,因地制宜出臺了系列房價(jià)調(diào)控政策.某市為擬定出臺房產(chǎn)限購的年齡政策為了解人們對房產(chǎn)限購年齡政策的態(tài)度,對年齡在歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持房產(chǎn)限購的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

年齡

支持的人數(shù)

15

5

15

28

17

1)由以上統(tǒng)計(jì)數(shù)據(jù)填列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為以44歲為分界點(diǎn)的不同人群對房產(chǎn)限購年齡政策的支持度有差異;

44歲以下

44歲及44歲以上

總計(jì)

支持

不支持

總計(jì)

2)若以44歲為分界點(diǎn),從不支持房產(chǎn)限購的人中按分層抽樣的方法抽取8人參加政策聽證會.現(xiàn)從這8人中隨機(jī)抽2人.

①抽到1人是44歲以下時(shí),求抽到的另一人是44歲以上的概率.

②記抽到44歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù):

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子里裝有9個(gè)球,其中有4個(gè)紅球,3個(gè)黃球和2個(gè)綠球,這些球除顏色外完全相同

從盒子中隨機(jī)取出2個(gè)球,求取出的2個(gè)球顏色相同的概率.

從盒子中隨機(jī)取出4個(gè)球,其中紅球個(gè)數(shù)分別記為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)參加詩詞大賽,各答3道題,每人答對每道題的概率均為,且各人是否答對每道題互不影響.

)用表示甲同學(xué)答對題目的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

)設(shè)為事件“甲比乙答對題目數(shù)恰好多2”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,底面,,點(diǎn)的中點(diǎn),,交于點(diǎn)

(1)求證:平面平面

(2)求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校實(shí)行選科走班制度,張毅同學(xué)的選擇是物理、生物、政治這三科,且物理在A層班級,生物在B層班級,該校周一上午課程安排如表所示,張毅選擇三個(gè)科目的課各上一節(jié),另外一節(jié)上自習(xí),則他不同的選課方法有(

A.8B.10C.12D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某園林單位準(zhǔn)備綠化一塊直徑為BC的半圓形空地,外的地方種草,的內(nèi)接正方形PQRS為一水池,其余的地方種花.,,設(shè)的面積為,正方形PQRS的面積為.

1)用a,表示;

2)當(dāng)a為定值,變化時(shí),求的最小值,及此時(shí)的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為零的等差數(shù)列{an)滿足a1=5,且a3,a6,a11成等比數(shù)列.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=an·3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為創(chuàng)建全國文明城市,推出“行人闖紅燈系統(tǒng)建設(shè)項(xiàng)目”,將針對闖紅燈行為進(jìn)行曝光.交警部門根據(jù)某十字路口以往的監(jiān)測數(shù)據(jù),從穿越該路口的行人中隨機(jī)抽查了人,得到如圖示的列聯(lián)表:

闖紅燈

不闖紅燈

合計(jì)

年齡不超過

年齡超過

合計(jì)

1)能否有的把握認(rèn)為闖紅燈行為與年齡有關(guān)?

2)下圖是某路口監(jiān)控設(shè)備抓拍的個(gè)月內(nèi)市民闖紅燈人數(shù)的統(tǒng)計(jì)圖.請建立的回歸方程,并估計(jì)該路口月份闖紅燈人數(shù).

附:

,

參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案