【題目】設(shè)函數(shù)分別在處取得極小值、極大值.平面上點(diǎn)、的坐標(biāo)分別為,該平面上動(dòng)點(diǎn)滿足,點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn).

(Ⅰ)求點(diǎn)、的坐標(biāo);

(Ⅱ)求動(dòng)點(diǎn)的軌跡方程.

【答案】(Ⅰ),;(Ⅱ)

【解析】

(Ⅰ)先對(duì)函數(shù)求導(dǎo),得到,解對(duì)應(yīng)方程,判斷函數(shù)單調(diào)性,從而可求出函數(shù)在處取得極小值,在取得極大值,進(jìn)而可求出結(jié)果;

(Ⅱ)設(shè),,得到,的坐標(biāo),根據(jù),得到,再由題意,得到代入,化簡整理,即可得出結(jié)果.

(Ⅰ)因?yàn)?/span>,所以

,解得

當(dāng)時(shí),,

當(dāng)時(shí),,

當(dāng)時(shí),,

所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,

所以,函數(shù)在處取得極小值,在取得極大值,

,,又;

點(diǎn),;

(Ⅱ)設(shè),則,,

,,

點(diǎn)是點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)

代入①得:,即為的軌跡方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y22pxp0)的焦點(diǎn)為F,點(diǎn)A2,y0)為拋物線上一點(diǎn),且|AF|4

1)求拋物線的方程;

2)直線lyx+m與拋物線交于不同兩點(diǎn)P,Q,若,其中O為坐標(biāo)原點(diǎn),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)如圖,長方形材料中,已知,.點(diǎn)為材料內(nèi)部一點(diǎn),,且. 現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點(diǎn)、分別在邊,上.

(1)設(shè),試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;

(2)試確定點(diǎn)上的位置,使得四邊形材料的面積最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐PABCD中,,EPC的中點(diǎn),平面PAC⊥平面ABCD

1)證明:ED∥平面PAB;

2)若,求二面角APCD的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問題,計(jì)劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費(fèi)為,土地的征用面積為第一層的倍,經(jīng)工程技術(shù)人員核算,第一層建筑費(fèi)用為,以后每增高一層,其建筑費(fèi)用就增加,設(shè)這幢公寓樓高層數(shù)為n,總費(fèi)用為萬元.(總費(fèi)用為建筑費(fèi)用和征地費(fèi)用之和)

1)若總費(fèi)用不超過835萬元,求這幢公寓樓最高有多少層數(shù)?

2)試設(shè)計(jì)這幢公寓的樓層數(shù),使總費(fèi)用最少,并求出最少費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年冬奧會(huì),北京市組織中學(xué)生開展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核.記X表示學(xué)生的考核成績,并規(guī)定X≥85為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績,并作成如下莖葉圖.

1)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核優(yōu)秀的概率;

2)從圖中考核成績滿足X[70,79]的學(xué)生中任取3人,設(shè)Y表示這3人重成績滿足≤10的人數(shù),求Y的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體,則下列四個(gè)命題:

①點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線與直線所成角的大小不變

②點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線與平面所成角的大小不變

③點(diǎn)在直線上運(yùn)動(dòng)時(shí),二面角的大小不變

④點(diǎn)在直線上運(yùn)動(dòng)時(shí),三棱錐的體積不變

其中的真命題是

A.①③B.③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓經(jīng)過伸縮變換后得到曲線以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程及直線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)上一動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是真命題的是  

A. 命題“若,則”的否命題是“若,則

B. 為假命題,則p,q均為假命題

C. 命題p,,則,

D. ”是“函數(shù)為偶函數(shù)”的充要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案