解:(1)由題意可得,當(dāng)n≥2時,有
,
兩式相減,得 a
n+1 -a
n =2a
n,即a
n+1=3a
n (n≥2)
所以,當(dāng)n≥2時,{a
n}是等比數(shù)列,要使n≥1時{a
n}是等比數(shù)列,
則只需
,從而得出t=1.
(2)由(1)得,等比數(shù)列{a
n}的首項(xiàng)為a
1=1,公比q=3,∴
.
∴
,
∴
,①(7分)
上式兩邊乘以3得
②,
①-②得
,
∴
.
(3)由(2)知
,∵
,
∵
,
,∴c
1c
2=-1<0.
∵
,∴數(shù)列{c
n}遞增.
由
,得當(dāng)n≥2時,c
n>0.
∴數(shù)列{c
n}的“積異號數(shù)”為1.
分析:(1)根據(jù)數(shù)列的第n項(xiàng)與前n項(xiàng)和的關(guān)系可得n≥2時,有
,化簡得a
n+1=3a
n (n≥2),要使n≥1時{a
n}是等比數(shù)列,只需
,從而得出t的值.
(2)由(1)得,等比數(shù)列{a
n}的首項(xiàng)為a
1=1,公比q=3,故有
,從而得到
,用錯位相減法求出數(shù)列{b
n}的前n項(xiàng)和T
n .
(3)由條件求得
,計算可得c
1c
2=-1<0,再由c
n+1-c
n>0可得,數(shù)列{c
n}遞增,由
,得當(dāng)n≥2時,c
n>0,由此求得數(shù)列{c
n}的“積異號數(shù)”為1.
點(diǎn)評:本題主要考查等比關(guān)系的確定,用錯位相減法對數(shù)列進(jìn)行求和,數(shù)列的第n項(xiàng)與前n項(xiàng)和的關(guān)系,數(shù)列與函數(shù)的綜合,屬于難題.