【題目】下列四組函數(shù)中,是同一個(gè)函數(shù)的是( )
A. ,
B.f(x)=2log2x,
C.f(x)=ln(x﹣1)﹣ln(x+1),
D.f(x)=lg(1﹣x)+lg(1+x),g(x)=lg(1﹣x2)
【答案】D
【解析】解:對于A: =|x|,其定義域?yàn)镽,而g(x)= 其定義域?yàn)閧x|x≥0},它們的定義域不同,∴不是同一函數(shù);
對于B:f(x)=2log2x,其定義域?yàn)閧x|x>0},而 其定義域?yàn)閧x|x≠0},它們的定義域不同,∴不是同一函數(shù);
對于C:f(x)=ln(x﹣1)﹣ln(x+1)其定義域?yàn)閧x|x>1},而 其定義域?yàn)閧x|x>1或x<﹣1},它們的定義域不同,∴不是同一函數(shù);
對于D:f(x)=lg(1﹣x)+lg(1+x)=lg(1﹣x2)其定義域?yàn)閧x|1>x>﹣1};g(x)=lg(1﹣x2)定義域?yàn)閧x|1>x>﹣1};定義域相同,對應(yīng)關(guān)系也相同,∴是同一函數(shù);
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解判斷兩個(gè)函數(shù)是否為同一函數(shù)的相關(guān)知識(shí),掌握只有定義域和對應(yīng)法則二者完全相同的函數(shù)才是同一函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}的前n項(xiàng)和記為Sn , 已知a10=30,a20=50.
(1)求通項(xiàng){an};
(2)令Sn=242,求n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】問題“求方程5x+12x=13x的解”有如下的思路:方程5x+12x=13x可變?yōu)椋? )x+( )x=1,考察函數(shù)f(x)=( )x+( )x可知f(2)=1,且函數(shù)f(x)在R上單調(diào)遞減,所以原方程有唯一解x=2.仿照此解法可得到不等式:lgx﹣4>2lg2﹣x的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= 的定義域?yàn)椋?/span> )
A.[0,1)
B.[0,2)
C.(1,2)
D.[0,1)∪(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,離心率為,兩焦點(diǎn)分別為,過的直線交橢圓于兩點(diǎn),且的周長為8.
(1)求橢圓的方程;
(2)過點(diǎn)作圓的切線交橢圓于兩點(diǎn),求弦長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的短軸長為2,離心率為 ,設(shè)過右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記 ,若直線l的斜率k≥ ,則λ的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)若拋物線的焦點(diǎn)是橢圓 左頂點(diǎn),求此拋物線的標(biāo)準(zhǔn)方程;
(2)若某雙曲線與橢圓 共焦點(diǎn),且以 為漸近線,求此雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中直線的傾斜角為,且經(jīng)過點(diǎn),以坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于兩點(diǎn),過點(diǎn)的直線與曲線相交于兩點(diǎn),且.
(1)平面直角坐標(biāo)系中,求直線的一般方程和曲線的標(biāo)準(zhǔn)方程;
(2)求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x,y滿足約束條件 ,當(dāng)目標(biāo)函數(shù)z=ax+by(a>0,b>0)在該約束條件下取到最小值2 時(shí),a2+b2的最小值為( )
A.5
B.4
C.
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com