【題目】2022年,將在北京和張家口兩個城市舉辦第24屆冬奧會.某中學為了普及奧運會知識和提高學生參加體育運動的積極性,舉行了一次奧運知識競賽.隨機抽取了30名學生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(1)在這30名學生中,甲組學生中有男生7人,乙組學生中有女生12人,試問有沒有90%的把握認為成績分在甲組或乙組與性別有關;
(2)①如果用分層抽樣的方法從甲組和乙組中抽取5人,再從這5人中隨機抽取2人,那么至少有1人在甲組的概率是多少?
②用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(人數(shù)很多)中隨機選取3人,用表示所選3人中甲組的人數(shù),試寫出的分布列,并求出的數(shù)學期望.
附: ;其中
獨立性檢驗臨界表:
0.100 | 0.050 | 0.010 | |
k | 2.706 | 3.841 | 6.635 |
【答案】(1)沒有90%的把握(2)①②
【解析】
(1)作出列聯(lián)表,由列聯(lián)表數(shù)據(jù)代入公式求出,從而得到?jīng)]有的把握認為成績分在甲組或乙組與性別有關;(2)①用表示“至少有1人在甲組”,利用對立事件概率計算公式能求出至少有1人在甲組的概率;②由題意知,,由此能求出的分布列,利用二項分布的期望公式可得數(shù)學期望.
(1)作出列聯(lián)表:
甲組 | 乙組 | 合計 | |
男生 | 7 | 6 | 13 |
女生 | 5 | 12 | 17 |
合計 | 12 | 18 | 30 |
由列聯(lián)表數(shù)據(jù)代入公式得,
故沒有90%的把握認為成績分在甲組或乙組與性別有關.
(2) ①用A表示“至少有1人在甲組”,則.
②由題知,抽取的30名學生中有12名學生是甲組學生,抽取1名學生是甲組學生的頻率為,
那么從所有的中學生中抽取1名學生是甲組學生的概率是,
又因為所取總體數(shù)量較多,抽取3名學生可以看出3次獨立重復實驗,
的取值為0,1,2,3. 且
于是服從二項分布,即,
所以的數(shù)學期望為 .
科目:高中數(shù)學 來源: 題型:
【題目】某玩具所需成本費用為P元,且P=1 000+5x+x2,而每套售出的價格為Q元,其中Q(x)=a+ (a,b∈R),
(1)問:玩具廠生產(chǎn)多少套時,使得每套所需成本費用最少?
(2)若生產(chǎn)出的玩具能全部售出,且當產(chǎn)量為150套時利潤最大,此時每套價格為30元,求a,b的值.(利潤=銷售收入-成本).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:
①在殘差圖中,殘差點比較均勻地落在水平的帶狀區(qū)域內(nèi),說明選用的模型比較合適;②用相關指數(shù)可以刻畫回歸的效果,值越小說明模型的擬合效果越好;③比較兩個模型的擬合效果,可以比較殘差平方和大小,殘差平方和越小的模型擬合效果越好.其中說法正確的是( )
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=1,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為 為參數(shù)).
(1)寫出直線l與曲線C的直角坐標方程;
(2)設曲線C經(jīng)過伸縮變換 得到曲線C′,設曲線C′上任一點為M(x,y),求 的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A.設p:f(x)=x3+2x2+mx+1是R上的單調(diào)增函數(shù), ,則p是q的必要不充分條件
B.若命題 ,則¬p:?x∈R,x2﹣x+1>0
C.奇函數(shù)f(x)定義域為R,且f(x﹣1)=﹣f(x),那么f(8)=0
D.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個不為0,則x2+y2≠0”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場為了了解顧客的購物信息,隨機在商場收集了位顧客購物的相關數(shù)據(jù)如下表:
一次購物款(單位:元) | |||||
顧客人數(shù) |
統(tǒng)計結(jié)果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀念品.
(Ⅰ)試確定, 的值,并估計每日應準備紀念品的數(shù)量;
(Ⅱ)現(xiàn)有人前去該商場購物,求獲得紀念品的數(shù)量的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知過點的直線的參數(shù)方程是(為參數(shù)).以平面直角坐標系的原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程式為.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程;
(Ⅱ)若直線與曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】各棱長都等于4的四面ABCD中,設G為BC的中點,E為△ACD內(nèi)的動點(含邊界),且GE∥平面ABD,若 =1,則| |= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關數(shù)據(jù)組成傳輸信息.設定原信息為 (),傳輸信息為,其中,運算規(guī)則為:,,,,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導致接收信息出錯,則下列接收信息一定有誤的是( )
A. 11010 B. 01100 C. 10111 D. 00011
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com