【題目】己知y=f(x)是定義在R上的偶函數(shù),若x≥0時(shí),f(x)=x﹣1,則x<0時(shí),f(x)=
【答案】﹣x﹣1
【解析】解:若x≥0時(shí),f(x)=x﹣1,
不妨設(shè)x<0,則﹣x>0,
則f(﹣x)=﹣x﹣1=f(x),
故x<0時(shí),f(x)=﹣x﹣1,
所以答案是:﹣x﹣1.
【考點(diǎn)精析】本題主要考查了函數(shù)奇偶性的性質(zhì)的相關(guān)知識點(diǎn),需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)測得(x,y)的兩組對應(yīng)值分別為(1,2),(2,5),現(xiàn)有兩個(gè)待選模型,甲:y=x2+1,乙:y=3x﹣1,若又測得(x,y)的一組對應(yīng)值為(3,10.2),則應(yīng)選用作為函數(shù)模型.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=f(x)的圖象與y=2x的圖象關(guān)于直線y=x對稱,則函數(shù)y=f(4x﹣x2)的遞增區(qū)間是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】區(qū)間[x1 , x2]的長度為x2﹣x1 . 已知函數(shù)y=4|x|的定義域?yàn)閇a,b],值域?yàn)閇1,4],則區(qū)間[a,b]長度的最大值與最小值之差為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={1,a},B={1,2,3},則“a=3”是“AB“的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=|x﹣3|+1在區(qū)間[0,9]上的值域是( )
A.[4,7]
B.[0,7]
C.[1,7]
D.[2,7]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是奇函數(shù),且當(dāng)x<0時(shí),函數(shù)解析式為:f(x)=1﹣2x,則當(dāng)x>0時(shí),該函數(shù)的解析式為( )
A.f(x)=﹣1﹣2x
B.f(x)=1+2x
C.f(x)=﹣1+2x
D.f(x)=1﹣2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對高一新生進(jìn)行體質(zhì)狀況抽測,新生中男生有800人,女生有600人,現(xiàn)用分層抽樣的方法在這1400名學(xué)生中抽取一個(gè)樣本,已知男生抽取了40人,則女生應(yīng)抽取人數(shù)為( )
A.24
B.28
C.30
D.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|x≥2},B={x|0≤x<6},則集合(UA)∩B=( )
A.{x|0<x<2}
B.{x|0<x≤2}
C.{x|0≤x<2}
D.{x|0≤x≤2}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com