【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c. (Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長(zhǎng).
【答案】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0 已知等式利用正弦定理化簡(jiǎn)得:2cosC(sinAcosB+sinBcosA)=sinC,
整理得:2cosCsin(A+B)=sinC,
即2cosCsin(π﹣(A+B))=sinC
2cosCsinC=sinC
∴cosC= ,
∴C= ;
(Ⅱ)由余弦定理得7=a2+b2﹣2ab ,
∴(a+b)2﹣3ab=7,
∵S= absinC= ab= ,
∴ab=6,
∴(a+b)2﹣18=7,
∴a+b=5,
∴△ABC的周長(zhǎng)為5+ .
【解析】(Ⅰ)已知等式利用正弦定理化簡(jiǎn),整理后利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡(jiǎn),根據(jù)sinC不為0求出cosC的值,即可確定出出C的度數(shù);(Ⅱ)利用余弦定理列出關(guān)系式,利用三角形面積公式列出關(guān)系式,求出a+b的值,即可求△ABC的周長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ax2+lnx,a∈R. (Ⅰ)若曲線y=f(x)與直線y=3x+b在x=1處相切,求實(shí)數(shù)a,b的值;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅲ)若a=0時(shí),函數(shù)h(x)=f(x)+bx有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間[0,1]上單調(diào)遞增的是( )
A.y=cosx
B.y=﹣x2
C.
D.y=|sinx|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD= ,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)證明:無(wú)論點(diǎn)E在BC邊的何處,都有PE⊥AF;
(2)當(dāng)BE等于何值時(shí),PA與平面PDE所成角的大小為45°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)xOy中,直線l的參數(shù)方程為{ (t為參數(shù))在以O(shè)為極點(diǎn).x軸正半軸為極軸的極坐標(biāo)系中.曲線C的極坐標(biāo)方程為ρ=4sinθ﹣2cosθ. (I)求直線l的普通方程與曲線C的直角坐標(biāo)方程:
(Ⅱ)若直線l與y軸的交點(diǎn)為P,直線l與曲線C的交點(diǎn)為A,B,求|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有半徑為R、圓心角(∠AOB)為90°的扇形材料,要裁剪出一個(gè)五邊形工件OECDF,如圖所示.其中E,F(xiàn)分別在OA,OB上,C,D在 上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.記∠COD=2θ,五邊形OECDF的面積為S.
(1)試求S關(guān)于θ的函數(shù)關(guān)系式;
(2)求S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}前n項(xiàng)和為Sn , 且S5=45,S6=60.
(1)求{an}的通項(xiàng)公式an;
(2)若數(shù)列{an}滿足bn+1﹣bn=an(n∈N*)且b1=3,求{ }的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,與函數(shù)y=﹣e|x|的奇偶性相同,且在(﹣∞,0)上單調(diào)性也相同的是( )
A.
B.y=ln|x|
C.y=x3﹣3
D.y=﹣x2+2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=﹣x3+1+a( ≤x≤e,e是自然對(duì)數(shù)的底)與g(x)=3lnx的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.[0,e3﹣4]
B.[0, +2]
C.[ +2,e3﹣4]
D.[e3﹣4,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com