【題目】如圖,在三棱柱中,側(cè)面是菱形,,

1)若是線段的中點,求證:平面平面;

2)若、分別是線段、的中點,求證:直線平面

【答案】1)證明見解析;(2)證明見解析.

【解析】

1)證明平面,然后利用面面垂直的判定定理可證明出平面平面;

2)連接,由中位線的性質(zhì)可得出,利用線面平行的判定定理可證明出直線平面,同理可得出平面,由面面平行的判定定理得出平面平面,由此可得出直線平面.

1)連接,在中,,中點,所以,

由于側(cè)面是菱形,則,,所以,為等邊三角形,的中點,

,所以平面

平面,所以平面平面;

2)如下圖所示,連接,

中,、分別為、的中點,所以,

平面,平面,所以平面

同理,,在三棱柱中,,,

平面,平面,所以平面

,平面,所以平面平面

平面,所以直線平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“垛積術(shù)”(隙積術(shù))是由北宋科學(xué)家沈括在《夢溪筆談》中首創(chuàng),南宋數(shù)學(xué)家楊輝、元代數(shù)學(xué)家朱世杰豐富和發(fā)展的一類數(shù)列求和方法,有菱草垛、方垛、芻童垛、三角垛等等,某倉庫中部分貨物堆放成如圖所示的“菱草垛”:自上而下,第一層1件,以后每一層比上一層多1件,最后一層是n件,已知第一層貨物單價1萬元,從第二層起,貨物的單價是上一層單價的.若這堆貨物總價是萬元,則n的值為( )

A. 7B. 8C. 9D. 10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電子計算機(jī)誕生于20世紀(jì)中葉,是人類最偉大的技術(shù)發(fā)明之一.計算機(jī)利用二進(jìn)制存儲信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或l,分別通過電路的斷或通實現(xiàn).“字節(jié)(Byte)”是更大的存儲單位,1Byte=8bit,因此1字節(jié)可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個二進(jìn)制數(shù)中,所有恰有相鄰兩位數(shù)是1其余各位數(shù)均是0的所有數(shù)相加,則計算結(jié)果用十進(jìn)制表示為

A. 254B. 381C. 510D. 765

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.

Ⅰ)由折線圖看出,可用線性回歸模型擬合yt的關(guān)系,請用相關(guān)系數(shù)加以說明;

Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2016年我國生活垃圾無害化處理量.

附注:

參考數(shù)據(jù):,

,≈2.646.

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為菱形,,為等邊三角形.

(1)求證:

(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (, 為自然對數(shù)的底數(shù)).

(Ⅰ)求函數(shù)的極值;

(Ⅱ)當(dāng)時,若直線與曲線沒有公共點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱的底面邊長和側(cè)棱長都為2的中點.

1)在線段上是否存在一點,使得平面平面,若存在指出點在線段上的位置,若不存在,請說明理由;

2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)求的單調(diào)遞增區(qū)間;

(2)當(dāng)的圖像剛好與軸相切時,設(shè)函數(shù),其中,求證:存在極小值且該極小值小于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的質(zhì)量指標(biāo)值,由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間,,內(nèi)的頻率之比為

)求這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;

用分層抽樣的方法在區(qū)間內(nèi)抽取一個容量為6的樣本,將該樣本看成一個總體,從中任意

抽取2件產(chǎn)品,求這2件產(chǎn)品都在區(qū)間內(nèi)的概率

查看答案和解析>>

同步練習(xí)冊答案