【題目】在平面直角坐標系中,圓軸的正半軸交于點,以為圓心的圓

與圓交于兩點.

(1)若直線與圓切于第一象限,且與坐標軸交于,當線段長最小時,求直線的方程;

(2)設(shè)是圓上異于的任意一點,直線分別與軸交于點,問是否為定值?若是,請求出該定值;若不是,請說明理由.

【答案】(1);(2) .

【解析】試題分析:(1)由截距式設(shè)直線的方程為從而可得,再由基本不等式取最值得條件可得,從而可得結(jié)果;(2設(shè),則,寫出直線與直線的方程,從而得到的坐標,從而求,化簡即可結(jié)論.

試題解析:(1)設(shè)直線的方程為,即

由直線與圓相切,得,即,

,

當且僅當時取等號,此時直線的方程為.

(2)設(shè),則,

直線的方程為:

直線的方程為:

分別令,得,

所以為定值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,且離心率為.

(1)求橢圓的方程;

(2)設(shè)點軸上的射影為點,過點的直線與橢圓相交于, 兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(1)求橢圓的方程;

(2)過點且斜率大于0的直線與橢圓相交于點, ,直線 軸相交于, 兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列 ,﹣ , ,﹣ ,…的一個通項公式為(
A.an=(﹣1)n
B.an=(﹣1)n
C.an=(﹣1)n+1
D.an=(﹣1)n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩個班級均為40人,進行一門考試后,按學生考試成績及 格與不及格進行統(tǒng)計,甲班及格人數(shù)為36人,乙班及格人數(shù)為24人.

(1) 根據(jù)以上數(shù)據(jù)建立一個的列聯(lián)表;

(2) 試判斷成績與班級是否有關(guān)?

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足 acosC﹣csinA=0.
(1)求角C的大;
(2)已知b=4,△ABC的面積為6 ,求邊長c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足a1=1,an+1 =1,記Sn=a12+a22+…+an2 , 若S2n+1﹣Sn 對任意n∈N*恒成立,則正整數(shù)m的最小值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+6.
(1)當a=5時,解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|x≤﹣1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案