【題目】在平面直角坐標(biāo)系中,已知圓O1:(x+a)2+y2=4,圓O2:(x﹣a)2+y2=4,其中常數(shù)a>2,點(diǎn)P是圓O1 , O2外一點(diǎn).
(1)若a=3,P(﹣1,4),過點(diǎn)P作斜率為k的直線l與圓O1相交,求實(shí)數(shù)k的取值范圍;
(2)過點(diǎn)P作O1 , O2的切線,切點(diǎn)分別為M1 , M2 , 記△PO1M1 , △PO2M2的面積分別為S1 , S2 , 若S1= S2 , 求點(diǎn)P的軌跡方程.

【答案】
(1)解:a=3,圓O1:(x+3)2+y2=4的圓心坐標(biāo)為(﹣3,0),半徑為2,

設(shè)直線l的方程為y﹣4=k(x+1),即kx﹣y+k+4=0,

圓心到直線的距離d= ≤2,∴k≥ ;


(2)解:設(shè)P(x,y),

∵S1= S2

|PM1|×2= |PM2|×2,

∴|PM1|= |PM2|,

∴|PO1|2﹣4=(a+1)(|PO2|2﹣4)

∴(x+a)2+y2﹣4=(a+1)[(x﹣a)2+y2﹣4].

即點(diǎn)P的軌跡方程為x2+y2﹣2(a+2)+a2﹣4=0.


【解析】(1)過點(diǎn)P作斜率為k的直線l與圓O1相交,圓心到直線的距離d= ≤2,即可求實(shí)數(shù)k的取值范圍;(2)利用S1= S2 , 直接求點(diǎn)P的軌跡方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均為正實(shí)數(shù),且滿足a+b+c=m,求證: ≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=4sinxcosx,x∈R的圖象,只要把函數(shù)y=sin2x﹣ cos2x,x∈R圖象上所有的點(diǎn)(
A.向左平移 個(gè)單位長(zhǎng)度
B.向右平移 個(gè)單位長(zhǎng)度
C.向左平移 個(gè)單位長(zhǎng)度
D.向右平移 個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下2×2列聯(lián)表:(單位:人).

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

乙班

30

總計(jì)

105

已知在全部105人中隨機(jī)抽取1人成績(jī)是優(yōu)秀的概率為 ,
(1)請(qǐng)完成上面的2 x×2列聯(lián)表,并根據(jù)表中數(shù)據(jù)判斷,是否有95%的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)系”?
(2)若甲班優(yōu)秀學(xué)生中有男生6名,女生4名,現(xiàn)從中隨機(jī)選派3名學(xué)生參加全市數(shù)學(xué)競(jìng)賽,記參加競(jìng)賽的男生人數(shù)為X,求X的分布列與期望. 附:K2=

P(K2≥k)

0.15

0.10

0.05

0.010

k

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=sin(2x﹣ )的圖象向左平移 個(gè)單位后,得到y(tǒng)=g(x)的圖象,則下列說法錯(cuò)誤的是(
A.y=g(x)的最小正周期為π
B.y=g(x)的圖象關(guān)于直線x= 對(duì)稱
C.y=g(x)在[﹣ ]上單調(diào)遞增
D.y=g(x)的圖象關(guān)于點(diǎn)( ,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,若正實(shí)數(shù)a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍為(
A.(e,2e+e2
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,g(x)=b(x+1),其中a≠0,b≠0
(1)若a=b,討論F(x)=f(x)﹣g(x)的單調(diào)區(qū)間;
(2)已知函數(shù)f(x)的曲線與函數(shù)g(x)的曲線有兩個(gè)交點(diǎn),設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1 , x2 , 證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將三顆骰子各擲一次,設(shè)事件A=“三個(gè)點(diǎn)數(shù)都不相同”,B=“至少出現(xiàn)一個(gè)6點(diǎn)”,則概率P(A|B)等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)ω>0,函數(shù)y=2cos(ωx+ )﹣1的圖象向右平移 個(gè)單位后與原圖象重合,則ω的最小值是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案