【題目】如圖,在四棱錐中,四邊形為矩形,平面平面,為中點,.
(1)求證:;
(2)若與平面所成的角為,求二面角的大小.
【答案】(1)證明見解析;(2).
【解析】
(1)由面面垂直的性質(zhì)定理可得出平面,可得出,由等腰三角形三線合一的性質(zhì)可得出,由此可得出平面,進而得出;
(2)設(shè),可得出,,由(1)可知,與平面所成的角為,可得,進而以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求出二面角的大小.
(1)四邊形為矩形,則,
平面平面,平面平面,平面,
所以面,平面,,
又,為中點,,
,平面,
平面,故;
(2)不妨設(shè),由得,由(1)得,∴,∴,由(1)得平面,
由(1)知,在平面的射影為,即,
,故.
以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,
易得、、、,,
,,,
設(shè)平面與平面的法向量分別為和,
則,
由,令,則,,,
,設(shè)二面角的大小為,則,所以二面角的大小
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)三棱錐的每個頂點都在球的球面上,是面積為的等邊三角形,,,且平面平面.
(1)確定的位置(需要說明理由),并證明:平面平面.
(2)與側(cè)面平行的平面與棱,,分別交于,,,求四面體的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù),為直線的傾斜角),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的直角坐標方程,并求時直線的普通方程;
(2)直線和曲線交于兩點,點的直角坐標為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了減輕家庭困難的高中學生的經(jīng)濟負擔,讓更多的孩子接受良好的教育,國家施行高中生國家助學金政策,普通高中國家助學金平均資助標準為每生每年1500元,具體標準由各地結(jié)合實際在1000元至3000元范圍內(nèi)確定,可以分為兩或三檔.各學校積極響應(yīng)政府號召,通過各種形式宣傳國家助學金政策.為了解某高中學校對國家助學金政策的宣傳情況,擬采用隨機抽樣的方法抽取部分學生進行采訪調(diào)查.
(1)若該高中學校有2000名在校學生,編號分別為0001,0002,0003,…,2000,請用系統(tǒng)抽樣的方法,設(shè)計一個從這2000名學生中抽取50名學生的方案.(寫出必要的步驟)
(2)該校根據(jù)助學金政策將助學金分為3檔,1檔每年3000元,2檔每年2000元,3檔每年1000元,某班級共評定出3個1檔,2個2檔,1個3檔,若從該班獲得助學金的學生中選出2名寫感想,求這2名同學不在同一檔的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國倉儲指數(shù)是反映倉儲行業(yè)經(jīng)營和國內(nèi)市場主要商品供求狀況與變化趨勢的一套指數(shù)體系.如圖所示的折線圖是2017年和2018年的中國倉儲指數(shù)走勢情況.根據(jù)該折線圖,下列結(jié)論中不正確的是( )
A. 2018年1月至4月的倉儲指數(shù)比2017年同期波動性更大
B. 2017年、2018年的最大倉儲指數(shù)都出現(xiàn)在4月份
C. 2018年全年倉儲指數(shù)平均值明顯低于2017年
D. 2018年各月倉儲指數(shù)的中位數(shù)與2017年各月倉儲指數(shù)中位數(shù)差異明顯
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com