精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}滿足:a1= ,a2= ,2an=an+1+an1(n≥2,n∈N),數列{bn}滿足:b1<0,3bn﹣bn1=n(n≥2,n∈R),數列{bn}的前n項和為Sn
(1)求證:數列{bn﹣an}為等比數列;
(2)求證:數列{bn}為遞增數列;
(3)若當且僅當n=3時,Sn取得最小值,求b1的取值范圍.

【答案】
(1)解:∵2an=an+1+an1(n≥2,n∈N),

∴{an}是等差數列.

又∵a1= ,a2=

,

,(n≥2,n∈N*),

∴bn+1﹣an+1=

= =

=

又∵ ,

∴{bn﹣an}是以 為首項,以 為公比的等比數列.


(2)證明:∵bn﹣an=(b1 )( n1,

當n≥2時,bn﹣bn1=

又b1<0,∴bn﹣bn1>0.

∴{bn}是單調遞增數列.


(3)解:∵當且僅當n=3時,Sn取最小值.

,即 ,

∴b1∈(﹣47,﹣11)


【解析】(1)由已知得{an}是等差數列, ,bn+1﹣an+1= = .由此能證明{bn﹣an}是以 為首項,以 為公比的等比數列.(2)由 .得當n≥2時,bn﹣bn1= .由此能證明{bn}是單調遞增數列.(3)由已知得 ,由此能求出b1的取值范圍.
【考點精析】根據題目的已知條件,利用數列的前n項和和數列的通項公式的相關知識可以得到問題的答案,需要掌握數列{an}的前n項和sn與通項an的關系;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知,函數的最小值為1.

(1)求的值;

(2)若,求實數的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知以下三視圖中有三個同時表示某一個三棱錐,則不是該三棱錐的三視圖的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2cos(ωx+ )(其中ω>0,x∈R)的最小正周期為10π.
(1)求ω的值;
(2)設α,β∈[0, ],f(5α+ )=﹣ ,f(5β﹣ )= ,求cos(α+β)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=x2+ax+3.
(1)當x∈R時,f(x)≥a恒成立,求a的取值范圍.
(2)當x∈[﹣2,2]時,f(x)≥a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等差數列{an}的前m項和為30,前2m項和為100,則它的前3m項和為(
A.130
B.170
C.210
D.260

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列判斷:
①從個體編號為1,2,…,1000的總體中抽取一個容量為50的樣本,若采用系統抽樣方法進行抽取,則分段間隔應為20;
②已知某種彩票的中獎概率為 ,那么買1000張這種彩票就一定會中獎(假設該彩票有足夠的張數);
③從裝有2個紅球和2個黒球的口袋內任取2個球,恰有1個黒球與恰有2個黒球是互斥但不對立的兩個事件;
④設具有線性相關關系的變量的一組數據是(1,3),(2,5),(3,6),(6,8),則它們的回歸直線一定過點(3, ).
其中正確的序號是( )
A.①、②、③
B.①、③、④
C.③、④
D.①、③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的短軸長為,橢圓上任意一點到右焦點距 離的最大值為

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過點作直線與曲線交于兩點,點滿足為坐標原點),求四邊形面積的最大值,并求此時的直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)與直線x+y﹣1=0相交于A、B兩點,若a∈[ , ],且以AB為直徑的圓經過坐標原點O,則橢圓離心率e的取值范圍為

查看答案和解析>>

同步練習冊答案