【題目】曲線與兩坐標軸的交點都在圓上,圓軸正半軸、軸正半軸分別交于,兩點.

(Ⅰ)求圓的方程;

(Ⅱ)過點作直線與圓交于,兩點,是否存在使得共線,如果存在求直線的方程,若不存在請說明理由.

【答案】(Ⅰ);(Ⅱ)存在,方程為.

【解析】

(Ⅰ)令,則,令,則,得到曲線與坐標軸交點為,,,再求圓的方程.

(Ⅱ)假設(shè)存在滿足條件,當的斜率不存在時,不滿足條件,當斜率存在時,設(shè)的方程為,聯(lián)立,設(shè),利用韋達定理求得 的坐標,再根據(jù)共線向量定理求解.

(Ⅰ)令,則

,則

曲線與坐標軸交點為,,

設(shè)圓心為,則,

,

∴圓的方程為.

(Ⅱ)假設(shè)存在滿足條件,

的斜率不存在時,不滿足條件,

的斜率存在時,設(shè)的方程為,

,

設(shè),,則,,

,

由(1)知,

,

共線,則

整理得,

經(jīng)檢驗,符合

∴存在的方程為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(2015秋?谛<壠谥校┲本l過點(1,2)和第一、二、四象限,若直線l的橫截距與縱截距之和為6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為《周碑算經(jīng)》一書作序時,介紹了勾股圓方圖,又稱趙爽弦圖(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比趙爽弦圖,可類似地構(gòu)造如圖(2)所示的圖形,它是由3個全等的三角形與中間的一個小正三角形組成的一個大正三角形,設(shè),若在大正三角形中隨機取一點,則此點取自小正三角形的概率為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓左、右頂點分別為A、B,上頂點為D(0,1),離心率為.

1)求橢圓C的標準方程;

2)若點E是橢圓C上位于x軸上方的動點,直線AEBE與直線分別交于M、N兩點,當線段MN的長度最小時,橢圓C上是否存在點T使的面積為?若存在,求出點T的坐標:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交通部門調(diào)查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統(tǒng)計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15.

1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關(guān);

平均車速超過的人數(shù)

平均車速不超過的人數(shù)

合計

男性駕駛員

女性駕駛員

合計

2)根據(jù)這些樣本數(shù)據(jù)來估計總體,隨機調(diào)查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數(shù)為,假定抽取的結(jié)果相互獨立,求的分布列和數(shù)學期望.

參考公式:

臨界值表:

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)判斷函數(shù)零點的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點N在曲線上,直線軸交于點,動點滿足,記點的軌跡為

1)求的軌跡方程;

2)若過點的直線交于兩點,點在直線 (為坐標原點),求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(12分)已知函數(shù)

(1)若x=2是函數(shù)f(x)的極值點,求曲線y=f(x)在點(1,f(1))處的切線方程;

(2)若函數(shù)f(x)在 上為單調(diào)增函數(shù),求a的取值范圍;

(3)設(shè)m,n為正實數(shù),且m>n,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)求函數(shù)的定義域,并證明在定義域上是奇函數(shù);

)若 恒成立,求實數(shù)的取值范圍;

)當時,試比較的大小關(guān)系.

查看答案和解析>>

同步練習冊答案