【題目】曲線與兩坐標軸的交點都在圓上,圓與軸正半軸、軸正半軸分別交于,兩點.
(Ⅰ)求圓的方程;
(Ⅱ)過點作直線與圓交于,兩點,是否存在使得與共線,如果存在求直線的方程,若不存在請說明理由.
【答案】(Ⅰ);(Ⅱ)存在,方程為.
【解析】
(Ⅰ)令,則或,令,則,得到曲線與坐標軸交點為,,,再求圓的方程.
(Ⅱ)假設(shè)存在滿足條件,當的斜率不存在時,不滿足條件,當斜率存在時,設(shè)的方程為,聯(lián)立得,設(shè),,利用韋達定理求得 的坐標,再根據(jù)共線向量定理求解.
(Ⅰ)令,則或,
令,則,
曲線與坐標軸交點為,,,
設(shè)圓心為,則,
∴,
,
∴圓的方程為.
(Ⅱ)假設(shè)存在滿足條件,
當的斜率不存在時,不滿足條件,
當的斜率存在時,設(shè)的方程為,
由得,
,
設(shè),,則,,
,
,
由(1)知,,
∴,
若與共線,則,
整理得,
∴或,
經(jīng)檢驗,符合,
∴存在的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為《周碑算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由3個全等的三角形與中間的一個小正三角形組成的一個大正三角形,設(shè),若在大正三角形中隨機取一點,則此點取自小正三角形的概率為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓左、右頂點分別為A、B,上頂點為D(0,1),離心率為.
(1)求橢圓C的標準方程;
(2)若點E是橢圓C上位于x軸上方的動點,直線AE、BE與直線分別交于M、N兩點,當線段MN的長度最小時,橢圓C上是否存在點T使的面積為?若存在,求出點T的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】交通部門調(diào)查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統(tǒng)計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.
(1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關(guān);
平均車速超過的人數(shù) | 平均車速不超過的人數(shù) | 合計 | |
男性駕駛員 | |||
女性駕駛員 | |||
合計 |
(2)根據(jù)這些樣本數(shù)據(jù)來估計總體,隨機調(diào)查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數(shù)為,假定抽取的結(jié)果相互獨立,求的分布列和數(shù)學期望.
參考公式:
臨界值表:
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)判斷函數(shù)零點的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點N在曲線上,直線與軸交于點,動點滿足,記點的軌跡為
(1)求的軌跡方程;
(2)若過點的直線與交于兩點,點在直線上 (為坐標原點),求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知函數(shù) .
(1)若x=2是函數(shù)f(x)的極值點,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在 上為單調(diào)增函數(shù),求a的取值范圍;
(3)設(shè)m,n為正實數(shù),且m>n,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)求函數(shù)的定義域,并證明在定義域上是奇函數(shù);
(Ⅱ)若 恒成立,求實數(shù)的取值范圍;
(Ⅲ)當時,試比較與的大小關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com