【題目】如圖所示,在三棱錐A-BOC中,OA底面BOC,OAB=OAC=30°,AB=AC=4,BC=,動點D在線段AB上.

1求證:平面COD平面AOB;

2當(dāng)ODAB時,求三棱錐C-OBD的體積.

【答案】1詳見解析2

【解析】

試題分析:1欲證平面COD平面AOB,根據(jù)面面垂直的判定定理可知在平面COD內(nèi)一直線與平面AOB垂直,根據(jù)勾股定理可知OCOB,根據(jù)線面垂直的判定定理可知OC平面AOB,而OC平面COD,滿足定理所需條件;2ODAB,OD=,此時,BD=1.根據(jù)三棱錐的體積公式求出所求即可

試題解析:1AO底面BOC,

AOOC,

AOOB.

∵∠OAB=OAC=30°,AB=AC=4,

OC=OB=2.

又BC=2

OCOB,

OC平面AOB.

OC平面COD,

平面COD平面AOB.

2ODAB,BD=1,OD=.

VC-OBD ×××1×2=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)設(shè),求的單調(diào)區(qū)間;

2)若處取得極大值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中

1當(dāng)時,恒成立,求的取值范圍;

2討論函數(shù)的極值點的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線.

(1)判斷直線與圓C的位置關(guān)系;

2)若定點P(1,1)分弦AB為,求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校對任課教師年齡狀況和接受教育程度(學(xué)歷)調(diào),部分結(jié)果(人數(shù)分布)如表:

學(xué)歷

35歲以下

35~50歲

50歲以上

本科

80

30

20

研究生

x

20

y

(1)用分層抽樣的方法在35~50歲年齡段的教師中抽取一個容量為5的樣本將該樣本看成一個總體,從中任取2人,求至少有1人的學(xué)歷為研究生的概率;

(2)若按年齡狀況用分層抽樣的方法抽取N個人,其中35歲以下48人50歲以上10人,再從這N個人中隨機(jī)抽取出1人此人的年齡為50歲以上的概率為,求xy的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某工廠開展群眾體育活動的情況,擬采用分層抽樣的方法從AB,C三個區(qū)中抽取7個工廠進(jìn)行調(diào)查,已知A,B,C區(qū)中分別有18,27,18個工廠

(Ⅰ)求從A,B,C區(qū)中分別抽取的工廠個數(shù);

(Ⅱ)若從抽取的7個工廠中隨機(jī)抽取2個進(jìn)行調(diào)查結(jié)果的對比,求這2個工廠中至少有1個來自A區(qū)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)據(jù),,是杭州市100個普通職工的201610月份的收入(均不超過2萬元),設(shè)這100個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上馬云201610月份的收入(約100億元),則相對于、,這101個月收入數(shù)據(jù)( )

A. 平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

B. 平均數(shù)大大增大,中位數(shù)可能不變,方差也不變

C. 平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變

D. 平均數(shù)大大增大,中位數(shù)可能不變,方差變大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:

組號

1

2

3

4

5

溫差

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.

1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次籃球定點投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進(jìn)一球得3分;在處每投進(jìn)一球得2分.如果前兩次得分之和超過3分就停止投籃;否則投第三次.某同學(xué)在處的投中率,在處的投中率為,該同學(xué)選擇先在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:


0

2

3

4

5


0.03





1)求的值;

2)求隨機(jī)變量的數(shù)學(xué)期望

3)試比較該同學(xué)選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大。

查看答案和解析>>

同步練習(xí)冊答案