【題目】紅鈴蟲是棉花的主要害蟲之一,能對農(nóng)作物造成嚴重傷害,每只紅鈴蟲的平均產(chǎn)卵數(shù)y和平均溫度x有關(guān),現(xiàn)收集了以往某地的7組數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.(表中

平均溫度

21

23

25

27

29

32

35

平均產(chǎn)卵數(shù)/

7

11

21

24

66

115

325

27.429

81.286

3.612

40.182

147.714

1)根據(jù)散點圖判斷,(其中自然對數(shù)的底數(shù))哪一個更適宜作為平均產(chǎn)卵數(shù)y關(guān)于平均溫度x的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結(jié)果及表中數(shù)據(jù),求出y關(guān)于x的回歸方程.(計算結(jié)果精確到小數(shù)點后第三位)

2)根據(jù)以往統(tǒng)計,該地每年平均溫度達到28℃以上時紅鈴蟲會造成嚴重傷害,需要人工防治,其他情況均不需要人工防治記該地每年平均溫度達到28℃以上的概率為.

①記該地今后5年中,恰好需要3次人工防治的概率為,求的最大值,并求出相應(yīng)的概率p.

②當取最大值時,記該地今后5年中,需要人工防治的次數(shù)為X,求X的數(shù)學(xué)期望和方差.

附:線性回歸方程系數(shù)公式.

【答案】1更適宜,;(2)①,;②,

【解析】

1)根據(jù)散點圖選擇合適函數(shù)模擬,利用變量,構(gòu)造線性回歸方程,利用已知量求解出關(guān)于的線性回歸方程,即可求解出y關(guān)于x的回歸方程;

2)①先表示出,然后根據(jù)分析出的最大值以及的值;

②根據(jù)的值以及二項分布的均值與方差的計算方法求解出結(jié)果即可.

解:(1)根據(jù)散點圖可以判斷,更適宜作為平均產(chǎn)卵數(shù)

y關(guān)于平均溫度x的回歸方程類型;

兩邊取自然對數(shù),得;

,得;

因為,

;

所以z關(guān)于x的回歸方程為;

所以y關(guān)于x的回歸方程為;

2)(i)由,

因為,令,得,解得;

所以上單調(diào)遞增,在上單調(diào)遞減,

所以有唯一的極大值為,也是最大值;

所以當時,;

ii)由(i)知,當取最大值時,,所以,

所以X的數(shù)學(xué)期望為,

方差為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在上的函數(shù),若函數(shù)滿足:①在區(qū)間上單調(diào)遞減;②存在常數(shù)p,使其值域為,則稱函數(shù)漸近函數(shù)

1)證明:函數(shù)是函數(shù)的漸近函數(shù),并求此時實數(shù)p的值;

2)若函數(shù),證明:當時,不是的漸近函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fxax12+x2exa0).

1)討論函數(shù)fx)的單調(diào)性;

2)若關(guān)于x的方程fxa0存在3個不相等的實數(shù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標系xOy的原點為極坐標系的極點,x軸的正半軸為極軸.已知曲線的極坐標方程為,P上一動點,Q的軌跡為.

1)求曲線的極坐標方程,并化為直角坐標方程,

2)若點,直線l的參數(shù)方程為t為參數(shù)),直線l與曲線的交點為AB,當取最小值時,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)打算處理一批產(chǎn)品,這些產(chǎn)品每箱100件,以箱為單位銷售.已知這批產(chǎn)品中每箱出現(xiàn)的廢品率只有或者兩種可能,兩種可能對應(yīng)的概率均為0.5.假設(shè)該產(chǎn)品正品每件市場價格為100元,廢品不值錢.現(xiàn)處理價格為每箱8400元,遇到廢品不予更換.以一箱產(chǎn)品中正品的價格期望值作為決策依據(jù).

1)在不開箱檢驗的情況下,判斷是否可以購買;

2)現(xiàn)允許開箱,有放回地隨機從一箱中抽取2件產(chǎn)品進行檢驗.

①若此箱出現(xiàn)的廢品率為,記抽到的廢品數(shù)為,求的分布列和數(shù)學(xué)期望;

②若已發(fā)現(xiàn)在抽取檢驗的2件產(chǎn)品中,其中恰有一件是廢品,判斷是否可以購買.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為.

(Ⅰ)若為等邊三角形,求橢圓的方程;

(Ⅱ)若橢圓的短軸長為,過點的直線與橢圓相交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程與曲線的直角坐標方程;

(2)若交于兩點,點的極坐標為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個零點.

1)求的取值范圍;

2)記的極值點為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列 滿足: , 或1().對任意,都存在,使得.,其中 且兩兩不相等.

(I)若.寫出下列三個數(shù)列中所有符合題目條件的數(shù)列的序號;

①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

(Ⅱ)記.若,證明:

(Ⅲ)若,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案