【題目】甲、乙、丙三名音樂(lè)愛(ài)好者參加某電視臺(tái)舉辦的演唱技能海選活動(dòng),在本次海選中有合格和不合格兩個(gè)等級(jí).若海選合格記1分,海選不合格記0分.假設(shè)甲、乙、丙海選合格的概率分別為,他們海選合格與不合格是相互獨(dú)立的.

1)求在這次海選中,這三名音樂(lè)愛(ài)好者至少有一名海選合格的概率;

2)記在這次海選中,甲、乙、丙三名音樂(lè)愛(ài)好者所得分之和為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

【答案】1

2的分布列為


0

1

2

3






【解析】

試題分析:概率與統(tǒng)計(jì)類解答題是高考?嫉念}型,以排列組合和概率統(tǒng)計(jì)等知識(shí)為工具,主要考查對(duì)概率事件的判斷及其概率的計(jì)算,隨機(jī)變量概率分布列的性質(zhì)及其應(yīng)用:對(duì)于(1),從所求事件的對(duì)立事件的概率入手即;對(duì)于(2),根據(jù)的所有可能取值:0,12,3;分別求出相應(yīng)事件的概率P,列出分布列,運(yùn)用數(shù)學(xué)期望計(jì)算公式求解即可.

1)記甲海選合格為事件A,乙海選合格為事件B,丙海選合格為事件C,甲、乙、丙至少有一名海選合格為事件E.

2的所有可能取值為0,1,2,3;

;

所以的分布列為


0

1

2

3






練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點(diǎn).
(1)求證:PD⊥平面ABE;
(2)若F為AB中點(diǎn), ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足,,是數(shù)列的前項(xiàng)的和.

(1)求數(shù)列的通項(xiàng)公式;

(2)若,成等差數(shù)列,,18,成等比數(shù)列,求正整數(shù)的值;

(3)是否存在,使得為數(shù)列中的項(xiàng)若存在,求出所有滿足條件的的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行六面體中,

求證:(1);

(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F(1,0),點(diǎn)A是直線l1:x=﹣1上的動(dòng)點(diǎn),過(guò)A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點(diǎn)P.
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)若點(diǎn)M,N是直線l1上兩個(gè)不同的點(diǎn),且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.?x,y∈R,若x+y≠0,則x≠1且y≠﹣1
B.a∈R,“ ”是“a>1”的必要不充分條件
C.命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.設(shè)隨機(jī)變量X~N(1,52),若P(X<0)=P(X>a﹣2),則實(shí)數(shù)a的值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)銷(xiāo)某商品,顧客可以采用一次性付款或分期付款購(gòu)買(mǎi),根據(jù)以往資料統(tǒng)計(jì),顧客采用一次性付款的概率是,經(jīng)銷(xiāo)件該產(chǎn)品,若顧客采用一次性付款,商場(chǎng)獲得利潤(rùn)元;若顧客采用分期付款,商場(chǎng)獲得利潤(rùn)元.

(Ⅰ)求位購(gòu)買(mǎi)商品的顧客中至少有位采用一次性付款的概率.

(Ⅱ)若位顧客每人購(gòu)買(mǎi)件該商品,求商場(chǎng)獲得利潤(rùn)不超過(guò)元的概率.

(Ⅲ)若位顧客每人購(gòu)買(mǎi)件該商品,設(shè)商場(chǎng)獲得的利潤(rùn)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長(zhǎng)為,圓的面積小于13.

(Ⅰ)求圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)過(guò)點(diǎn)的直線與圓交于不同的兩點(diǎn),以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線恰好平行?如果存在,求出的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓心角為,半徑為的扇形鐵皮上截取一塊矩形材料,其中點(diǎn)為圓心,點(diǎn)在圓弧上,點(diǎn)在兩半徑上,現(xiàn)將此矩形鐵皮卷成一個(gè)以為母線的圓柱形鐵皮罐的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)矩形的邊長(zhǎng),圓柱形鐵皮罐的容積為.

(1)求圓柱形鐵皮罐的容積關(guān)于的函數(shù)解析式,并指出該函數(shù)的定義域;

(2)當(dāng)為何值時(shí),才使做出的圓柱形鐵皮罐的容積最大?最大容積是多少? (圓柱體積公式:,為圓柱的底面枳,為圓柱的高)

查看答案和解析>>

同步練習(xí)冊(cè)答案