【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)該班40名學(xué)生進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表:
男生 | 女生 | 總計(jì) | |
喜愛打籃球 | 19 | 15 | 34 |
不喜愛打籃球 | 1 | 5 | 6 |
總計(jì) | 20 | 20 | 40 |
(1)在女生不喜愛打籃球的5個(gè)個(gè)體中,隨機(jī)抽取2人,求女生甲被選中的概率;
(2)判斷能否在犯錯(cuò)誤的概率不超過的條件下認(rèn)為喜愛籃球與性別有關(guān)?
附:,其中.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | <>0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺(tái)舉行一個(gè)比賽類型的娛樂節(jié)目, 兩隊(duì)各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊(duì)第六位選手的成績沒有給出,并且告知大家隊(duì)的平均分比隊(duì)的平均分多4分,同時(shí)規(guī)定如果某位選手的成績不少于21分,則獲得“晉級(jí)”.
(1)根據(jù)莖葉圖中的數(shù)據(jù),求出隊(duì)第六位選手的成績;
(2)主持人從隊(duì)所有選手成績中隨機(jī)抽2個(gè),求至少有一個(gè)為“晉級(jí)”的概率;
(3)主持人從兩隊(duì)所有選手成績分別隨機(jī)抽取2個(gè),記抽取到“晉級(jí)”選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),以為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),若直線與曲線相交于,兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一動(dòng)圓P與定圓外切,且與直線相切,記動(dòng)點(diǎn)P的軌跡為曲線E.
(1)求曲線E的方程;
(2)過點(diǎn)作直線l與曲線E交于不同的兩點(diǎn)B、C,設(shè)BC中點(diǎn)為Q,問:曲線E上是否存在一點(diǎn)A,使得恒成立?如果存在,求出點(diǎn)A的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動(dòng)優(yōu)化升級(jí)和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實(shí)現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯(cuò)誤的是( )
A. 2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加
B. 2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍
C. 2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍
D. 2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的離心率為,圓與軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長為.
(1)求橢圓的方程;
(2)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),,試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)若在定義域內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且、).設(shè)關(guān)于的不等式的解集為,且方程的兩實(shí)根為、.
(1)若,完成下列問題:
①求、的關(guān)系式;
②若、都是負(fù)整數(shù),求的解析式;
(2)若,求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com