【題目】在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個(gè)頂點(diǎn)都在橢圓上,其中A(0,1)為直角頂點(diǎn).若該三角形的面積的最大值為,則實(shí)數(shù)a的值為_____.
【答案】3
【解析】
設(shè)直線AB的方程為y=kx+1,則直線AC的方程可設(shè)為yx+1,(k≠0),聯(lián)立方程得到B(,),故S,令t,得S,利用均值不等式得到答案.
設(shè)直線AB的方程為y=kx+1,則直線AC的方程可設(shè)為yx+1,(k≠0)
由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x
∵A的坐標(biāo)(0,1),∴B的坐標(biāo)為(,k1),即B(,),
因此AB,
同理可得:AC.
∴Rt△ABC的面積為SABAC
令t,得S.
∵t2,∴S△ABC.
當(dāng)且僅當(dāng),即t時(shí),△ABC的面積S有最大值為.
解之得a=3或a.
∵a時(shí),t2不符合題意,∴a=3.
故答案為:3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①“”是“”的必要不充分條件
②函數(shù)的最小值為2
③命題“,”的否定是“,”
④已知雙曲線過點(diǎn),且漸近線為,則離心率,其中所有正確命題的編號(hào)是:_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知f(x)=x3+3ax2+bx+a2在x=-1時(shí)有極值0,求常數(shù)a,b的值;
(2)設(shè)函數(shù)g(x)=x3-6x+5,x∈R. 若關(guān)于x的方程g(x)=m有三個(gè)不同的實(shí)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,邊長為a的空間四邊形ABCD中,∠BCD=90°,平面ABD⊥平面BCD,則異面直線AD與BC所成角的大小為( 。
A. 30°B. 45°C. 60°D. 90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為拋物線上不同的兩點(diǎn),且,點(diǎn)且于點(diǎn).
(1)求的值;
(2)過軸上一點(diǎn) 的直線交于,兩點(diǎn),在的準(zhǔn)線上的射影分別為,為的焦點(diǎn),若,求中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(t為參數(shù)),點(diǎn)A(1,0),B(3,),若以直角坐標(biāo)系xOy的O點(diǎn)為極點(diǎn),x軸正方向?yàn)闃O軸,且長度單位相同,建立極坐標(biāo)系.
(1)求直線AB的極坐標(biāo)方程;
(2)求直線AB與曲線C交點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an=(n∈N*,n≥2),數(shù)列{bn}滿足關(guān)系式bn=(n∈N*).
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四棱錐中,底面,是邊長為2的等邊三角形,且,,點(diǎn)是棱上的動(dòng)點(diǎn).
(I)求證:平面平面;
(Ⅱ)當(dāng)線段最小時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,點(diǎn),,分別為橢圓的左焦點(diǎn)、右頂點(diǎn)和下頂點(diǎn),的面積為,且橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)為橢圓上一點(diǎn),直線與橢圓交于不同的兩點(diǎn),,且(點(diǎn)為坐標(biāo)原點(diǎn)),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com