精英家教網 > 高中數學 > 題目詳情

 本題共有3個小題,第1小題滿分6分,第2小題滿分6分,第3小題滿分6分.

已知橢圓,常數、,且

(1)當時,過橢圓左焦點的直線交橢圓于點,與軸交于點,若,求直線的斜率;

(2)過原點且斜率分別為)的兩條直線與橢圓的交點為(按逆時針順序排列,且點位于第一象限內),試用表示四邊形的面積;

(3)求的最大值.

 

 

 

 

 

 

 

 

【答案】

 本題共有3個小題,第1小題滿分6分,第2小題滿分6分,第3小題滿分6分.

解 (1)

   .           ……………………2分

設滿足題意的點為,

.            ……………4分

.   ………5分

.                     ……………6分

(2)                                ……………8分

設點A

聯(lián)立方程組于是是此方程的解,故                                              ………10分

  .          ……………………12分

(3)

,則.   ………13分

理由:對任意兩個實數

      =

           .                      …………14分

,于是.  ……16分

.                                 ………………18分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2009•閔行區(qū)二模)(文)本題共有3個小題,第1、2小題滿分各5分,第3小題滿分7分.第3小題根據不同思維層次表現(xiàn)予以不同評分.
對于數列{an}
(1)當{an}滿足an+1-an=d(常數)且
an+1
an
=q
(常數),證明:{an}為非零常數列.
(2)當{an}滿足an+12-an2=d'(常數)且
a
2
n+1
a
2
n
=q′
(常數),判斷{an}是否為非零常數列,并說明理由.
(3)對(1)、(2)等式中的指數進行推廣,寫出推廣后的一個正確結論(不用說明理由).

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分18分)本題共有3個小題,第1小題滿分5分,第2小題滿分5分,第3小題滿分8分.

已知是公差為的等差數列,是公比為的等比數列.

(1)       若,是否存在,有說明理由;

(2)       找出所有數列,使對一切,,并說明理由;

(3)       若試確定所有的,使數列中存在某個連續(xù)項的和是數列中的一項,請證明.

查看答案和解析>>

科目:高中數學 來源:2008年普通高等學校招生全國統(tǒng)一考試文科數學(上海卷) 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,
第3小題滿分8分.
已知數列,,是正整數),與數列,,是正整數).記
(1)若,求的值;
(2)求證:當是正整數時,;
(3)已知,且存在正整數,使得在,,中有4項為100.
的值,并指出哪4項為100.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年上海市徐匯區(qū)高三上學期期末考試文科數學試卷(解析版) 題型:解答題

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.

(文)對于數列,從中選取若干項,不改變它們在原來數列中的先后次序,得到的數列稱為是原來數列的一個子數列. 某同學在學習了這一個概念之后,打算研究首項為,公差為的無窮等差數列的子數列問題,為此,他取了其中第一項,第三項和第五項.

(1) 若成等比數列,求的值;

(2) 在, 的無窮等差數列中,是否存在無窮子數列,使得數列為等比數列?若存在,請給出數列的通項公式并證明;若不存在,說明理由;

(3) 他在研究過程中猜想了一個命題:“對于首項為正整數,公比為正整數()的無窮等比數  列,總可以找到一個子數列,使得構成等差數列”. 于是,他在數列中任取三項,由的大小關系去判斷該命題是否正確. 他將得到什么結論?

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年上海市靜安區(qū)高三下學期質量調研考試數學理卷 題型:選擇題

.(本題滿分18分)

本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設二次函數,對任意實數,有恒成立;數列滿足.

(1)求函數的解析式和值域;

(2)試寫出一個區(qū)間,使得當時,數列在這個區(qū)間上是遞增數列,

并說明理由;

(3)已知,是否存在非零整數,使得對任意,都有

 恒成立,若存在,

求之;若不存在,說明理由.

 

查看答案和解析>>

同步練習冊答案