【題目】設(shè)m,n是兩條不同直線,,,是三個(gè)不同平面,給出下列四個(gè)命題:①若m⊥n,則m//n;②若////,m,則m⊥;③若m//,n//,則m//n;④,,則//.其中正確命題的序號(hào)是_______

【答案】①②

【解析】

中,由線面垂直的性質(zhì)定理得mn;在中,由線面垂直的判定定理得mγ;在中,mn相交、平行或異面;在中,αβ相交或平行.

解:由mn是兩條不同直線,α,βγ是三個(gè)不同平面,知:

中,若mα,nα,則由線面垂直的性質(zhì)定理得mn,故正確;

中,若αβ,βγmα,則由線面垂直的判定定理得mγ,故正確;

中,若mα,nα,則mn相交、平行或異面,故錯(cuò)誤;

中,αγ,βγ,則αβ相交或平行,故錯(cuò)誤.

故答案為:①②

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

Ⅰ)若的圖像在處的切線經(jīng)過點(diǎn)(3,4),求的值;

Ⅱ)若,求證: ;

Ⅲ)當(dāng)函數(shù)存在三個(gè)不同的零點(diǎn)時(shí),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 , 其左右焦點(diǎn)為過點(diǎn)的直線交橢圓兩點(diǎn),線段的中點(diǎn)為, 的中垂線與軸和軸分別交于兩點(diǎn),且、、構(gòu)成等差數(shù)列.

(1)求橢圓的方程;

(2)記的面積為 為原點(diǎn)的面積為,試問:是否存在直線,使得說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四面體ABCD中,OBD中點(diǎn),AB=AD=2,.

(1)求證:AO⊥平面BCD;

(2)求點(diǎn)D到平面ABC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知對(duì)任意的實(shí)數(shù),都有:,且當(dāng)時(shí),有

1)求;

2)求證:上為增函數(shù);

3)若,且關(guān)于的不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC—A1B1C1中,側(cè)棱與底面垂直,∠BAC90°,ABAC=AA12,點(diǎn)M,N分別為A1B和B1C1的中點(diǎn).

(1)求異面直線A1B與NC所成角的余弦值;

(2)求A1B與平面NMC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中,設(shè)

(1)判斷的奇偶性,并說明理由;

(2),求使成立的x的集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)對(duì)一切實(shí)數(shù),都有成立,且,,.

1)求的解析式;

2)記函數(shù)上的最大值為,最小值為,若,當(dāng)時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在五面體中, , , ,平面平面..

(1)證明:直線平面;

(2)已知為棱上的點(diǎn),試確定點(diǎn)位置,使二面角的大小為.

查看答案和解析>>

同步練習(xí)冊(cè)答案