精英家教網 > 高中數學 > 題目詳情

【題目】過拋物線E:x2=2py(p>0) 的焦點F作斜率分別為 k1,k2 的兩條不同的直線 l1,l2 ,且k1+k2=2 ,l1與E 相交于點A,B, l2與E 相交于點C,D.以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在的直線記為 l .
(1)若k1>0,k2>0 ,證明;;
(2)若點M到直線 l 的距離的最小值為 ,求拋物線E的方程.

【答案】
(1)

【解答】由題意,拋物線E的焦點為 ,直線 l1 的方程為 .

,得 x2-2pk1x-p2=0 ,設A,B兩點坐標分別為(x1,y1),(x2,y2),

則 x1,x2 是上述方程的兩個實數根,從而x1+x2 =2pk1, ,y1+y2=k1(x1+x2)+p=2pk12+p ,所以點M的坐標為 ,同理可得點N的坐標為 ,于是

,由題設, k1+k2=2 ,k1>0,k2>0, ,

所以 ,故


(2)

【解答】由拋物線的定義得 , ,

所以|AB|=y1+y2+p=2pk12+2p ,從而圓M的半徑r1=pk12+p ,故圓M的方程為

化簡得

同理可得圓N的方程為 .于是圓M,圓N的公共弦所在直線l的方程為 ,又 ,則 的方程為 ,因為 p>0 ,所以點M到直線l的距離 ,故當 時, d 取最小值 ,由題設, ,解得 p=8 ,故所求拋物線E的方程為x2=16y .


【解析】(1)先寫出過拋物線焦點的直線方程,然后和拋物線方程聯(lián)立消去y得到關于x的一元二次方程,利用根與系數的關系以及向量的坐標運算可得到結果.(2)利用拋物線的焦點弦長公式求出|AB|,此即圓M的直徑,進而可求出圓M的方程,同理可求出圓N的方程,再把兩圓的方程相減即得兩圓公共弦所在直線 方程,于是代入條件即可求解.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數 ,
(1)若不等式 的解集 .求 的值;
(2)若 的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數
(1)當 時,討論 f(x)的單調性;
(2)若 時, ,求 a 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 ,函數 f(x)=x2(x-a) ,若f'(1)=1 .
(1)求 a 的值并求曲線 y=f(x) 在點(1,f(1)) 處的切線方程y=g(x) ;
(2)設h(x)=f'(x)+g(x) ,求 h(x) 在 [0,1] 上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正三棱錐P﹣ABC,點P,A,B,C都在半徑為 的球面上,若PA,PB,PC兩兩垂直,則球心到截面ABC的距離為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,兩個橢圓, 內部重疊區(qū)域的邊界記為曲線C,P是曲線C上的任意一點,給出下列四個判斷:

①PF1(-4,0)、F2(4,0)、E1(0,-4)、E2(0,4)四點的距離之和為定值;

②曲線C關于直線y=x、y=-x均對稱;③曲線C所圍區(qū)域面積必小于36.

④曲線C總長度不大于6π.上述判斷中正確命題的序號為________________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= 為偶函數,方程f(x)=m有四個不同的實數解,則實數m的取值范圍是(
A.(﹣3,﹣1)
B.(﹣2,﹣1)
C.(﹣1,0)
D.(1,2)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】判斷下列命題是全稱命題還是特稱命題,并判斷其真假;
(1)
(2).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯(lián)網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到表格:(單位:人)

經常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據以上數據,能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?

(2)現從所抽取的30歲以上的網友中利用分層抽樣的方法再抽取5人.

(i)分別求這5人中經常使用、偶爾或不用共享單車的人數;

(ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.

參考公式: ,其中.

參考數據:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案