(08年聊城市四模理) (14分)  在直角坐標平面上有一點列位于直線上,且Pn的橫坐標構(gòu)成以為首項,-1為公差的等差數(shù)列{xn}.

   (1)求點Pn的坐標;

   (2)設(shè)拋物線列C1C2,…,Cn,…中的每一條的對稱軸都垂直于x軸,第n條拋物線Cn的頂點為Pn,且經(jīng)過點Dn(0,n2+1). 記與拋物線Cn相切于點Dn的直線的斜率為kn,求證:

   (3)設(shè),等差數(shù)列{an}的任意一項,其中a1ST中的最大數(shù),且-256<a10­<-125,求數(shù)列{an}通項公式.

解析:(1)

   

    …………………………………………4分

   (2)∵Cn的對稱軸垂直于x軸,且頂點為Pn,

   

   

    ………………………………6分

    |x=0=2n+3.

   

   

    ………………………………10分

   (3)S={x|x=-(2n+3),nN*},

    T={y|y=-(12n+5),nN*}={y|=-2(6n+5)-3,nN*}

    ∴ST=TT中的最大數(shù)a1=-17………………………………12分

    設(shè){an}的公差為d,則a10=-17+9d∈(-265,-125),由此得

   

    ……………………………………14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年聊城市四模理)(12分)

   (1)已知函數(shù)上是增函數(shù),求a的取值范圍;

   (2)在(1)的結(jié)論下,設(shè)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年聊城市四模理) (12分) 已知點G是△ABC的重心,A(0,-1),B(0,1). 在x軸上有一點M,滿足,(若△ABC的頂點坐標為,則該三角形的重心坐標為.

   (1)求點C的軌跡E的方程;

   (2)若斜率為k的直線l與(1)中的曲線E交于不同的兩點P、Q,且,試求斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年聊城市四模理) (12分)   如圖是某幾何體的直觀圖與三視圖的側(cè)視圖、俯視圖. 在直觀圖中,2BN=AEMND的中點. 側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.

   (1)在答題紙上的虛線框內(nèi)畫出該幾何體的正視圖,并標上數(shù)據(jù);

   (2)求證:EM∥平面ABC

   (3)試問在邊BC上是否存在點G,使GN⊥平面NED. 若存在,確定點G的位置;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年聊城市四模理) (12分)  已知M、N兩點的坐標分別是M(1+cos2x,1),N(1,sin2x+a)(x,是常數(shù)),令是坐標原點).

   (1)求函數(shù)的解析式,并求函數(shù)在[0,π]上的單調(diào)遞增區(qū)間;

   (2)當,求a的值,并說明此時的圖象可由函數(shù)

        的圖象經(jīng)過怎樣的平移和伸縮變換而得到.

查看答案和解析>>

同步練習(xí)冊答案