已知向量,動(dòng)點(diǎn)到定直線的距離等于,并且滿足,其中為坐標(biāo)原點(diǎn),為非負(fù)實(shí)數(shù).
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)若將曲線向左平移一個(gè)單位,得曲線,試判斷曲線為何種類型;
(3)若(2)中曲線為圓錐曲線,其離心率滿足,當(dāng)是曲線的兩個(gè)焦點(diǎn)時(shí),則圓錐曲線上恒存在點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
(1)(2)見解析(3)
(1)設(shè)動(dòng)點(diǎn),則由,為坐標(biāo)原點(diǎn),得
由,得為所求的動(dòng)點(diǎn)的軌跡方程;
(2)將曲線向左平移一個(gè)單位,得曲線的方程為()
①當(dāng)時(shí),得,曲線為一條直線;
②當(dāng)時(shí),得.若,曲線為圓;若,曲線為雙曲線;若,曲線為焦點(diǎn)在軸上的橢圓;
(3)若(2)中曲線為圓錐曲線,其離心率滿足,則曲線為焦點(diǎn)在軸上的橢圓,
圓錐曲線上恒存在點(diǎn),使得成立,
即以為直徑的圓與橢圓恒有交點(diǎn).
綜上得實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(09年湖南師大附中月考理)(13分)
已知向量,,動(dòng)點(diǎn)到定直線的距離等于,并且滿足,其中是坐標(biāo)原點(diǎn),是參數(shù)。
(1)求動(dòng)點(diǎn)的軌跡方程;
(2)當(dāng)時(shí),若直線與動(dòng)點(diǎn)的軌跡相交于、兩點(diǎn),線段的垂直平分線交軸,求的取值范圍;
(3)如果動(dòng)點(diǎn)的軌跡是一條圓錐曲線,其離心率滿足,求的取值范圍。查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆陜西省師大附中、西工大附中高三第七次聯(lián)考文數(shù) 題型:解答題
(本題14分)
已知向量動(dòng)點(diǎn)到定直線的距離等于并且滿足其中O是坐標(biāo)原點(diǎn),是參數(shù).
(I)求動(dòng)點(diǎn)的軌跡方程,并判斷曲線類型;
(Ⅱ) 當(dāng)時(shí),求的最大值和最小值;
(Ⅲ) 如果動(dòng)點(diǎn)M的軌跡是圓錐曲線,其離心率滿足求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(四) 題型:解答題
已知向量動(dòng)點(diǎn)到定直線的距離等于并且滿足其中是坐標(biāo)原點(diǎn),是參數(shù).
(1)求動(dòng)點(diǎn)的軌跡方程,并判斷曲線類型;
(2)當(dāng)時(shí),求的最大值和最小值;
(3)如果動(dòng)點(diǎn)的軌跡是圓錐曲線,其離心率滿足求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題14分)
已知向量動(dòng)點(diǎn)到定直線的距離等于并且滿足其中O是坐標(biāo)原點(diǎn),是參數(shù).
(I)求動(dòng)點(diǎn)的軌跡方程,并判斷曲線類型;
(Ⅱ) 當(dāng)時(shí),求的最大值和最小值;
(Ⅲ) 如果動(dòng)點(diǎn)M的軌跡是圓錐曲線,其離心率滿足求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com