【題目】已知y=f(x)是定義在R上的奇函數(shù),且 為偶函數(shù),對(duì)于函數(shù)y=f(x)有下列幾種描述:①y=f(x)是周期函數(shù)②x=π是它的一條對(duì)稱軸;③(﹣π,0)是它圖象的一個(gè)對(duì)稱中心;④當(dāng) 時(shí),它一定取最大值;其中描述正確的是

【答案】①③
【解析】解:∵ 為偶函數(shù)∴f(﹣x+ )=f(x+ ),對(duì)稱軸為
而y=f(x)是定義在R上的奇函數(shù)
∴f(﹣x+ )=﹣f(x﹣ )=f(x+
即f(x+ )=﹣f(x﹣ ),f(x+π)=﹣f(x),f(x+2π)=f(x)
∴y=f(x)是周期函數(shù),故①正確
x= (k∈Z)是它的對(duì)稱軸,故②不正確
(﹣π,0)是它圖象的一個(gè)對(duì)稱中心,故③正確
當(dāng) 時(shí),它取最大值或最小值,故④不正確
所以答案是:①③
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí),掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,假命題為(  )

A. 存在四邊相等的四邊形不是正方形

B. z1,z2C,z1z2為實(shí)數(shù)的充分必要條件是z1,z2互為共軛復(fù)數(shù)

C. x,yR,且xy>2,則x,y至少有一個(gè)大于1

D. 對(duì)于任意nN,都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)閇﹣1,5],部分對(duì)應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,

x

﹣1

0

2

4

5

f(x)

1

2

1.5

2

1

下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)f(x)的值域?yàn)閇1,2];
②如果當(dāng)x∈[﹣1,t]時(shí),f(x)的最大值為2,那么t的最大值為4;
③函數(shù)f(x)在[0,2]上是減函數(shù);
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)﹣a最多有4個(gè)零點(diǎn).
其中正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sin θ,θ∈[0,2π).

(1)求曲線C的直角坐標(biāo)方程;

(2)在曲線C上求一點(diǎn)D,使它到直線l:的距離最短,并求出點(diǎn)D的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果的解集為,則對(duì)于函數(shù)應(yīng)有

( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足遞推式

(1)求a1,a2,a3;

(2)若存在一個(gè)實(shí)數(shù),使得為等差數(shù)列,求;

(3)求數(shù)列{}的前n項(xiàng)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=1-x2+ln(x+1).

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若不等式f(x)>x2(k∈N*)在(0,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線

(1)若,過點(diǎn)的直線交曲線兩點(diǎn),且,求直線的方程;

(2)若曲線表示圓時(shí),已知圓與圓交于兩點(diǎn),若弦所在的直線方程為, 為圓的直徑,且圓過原點(diǎn),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ab≠0,求證ab=1的充要條件是a3b3aba2b2=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案