【題目】如圖所示,在直角坐標(biāo)系中,曲線C由以原點(diǎn)為圓心,半徑為2的半圓和中心在原點(diǎn),焦點(diǎn)在x軸上的半橢圓構(gòu)成,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線C的極坐標(biāo)方程;
(2)已知射線與曲線C交于點(diǎn)M,點(diǎn)N為曲線C上的動(dòng)點(diǎn),求面積的最大值.
【答案】(1);(2) .
【解析】
(1)根據(jù)題意,分別求出曲線上半部分和下半部分直角坐標(biāo)方程,利用直角坐標(biāo)系與極坐標(biāo)的轉(zhuǎn)化公式,即可得到曲線的極坐標(biāo)方程;
(2)由題可知要使面積最大,則點(diǎn)在半圓上,且,利用極坐標(biāo)方程求出,由三角形面積公式即可得到答案。
(1)由題設(shè)可得,
曲線上半部分的直角坐標(biāo)方程為,
所以曲線上半部分的極坐標(biāo)方程為.
又因?yàn)榍下半部分的標(biāo)準(zhǔn)方程為,
所以曲線下半部分極坐標(biāo)方程為,
故曲線的極坐標(biāo)方程為.
(2)由題設(shè),將代入曲線的極坐標(biāo)方程可得:.
又點(diǎn)是曲線上的動(dòng)點(diǎn),所以.
由面積公式得:
當(dāng)且僅當(dāng),時(shí)等號(hào)成立,故 面積的最大值為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)設(shè)數(shù)列{an}是公比為正數(shù)的等比數(shù)列,a1=2,a3﹣a2=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+a)(a>0且a≠1)的圖象過點(diǎn)(﹣1,0),g(x)=f(x)+f(﹣x).
(Ⅰ)求函數(shù)g(x)的定義域;
(Ⅱ)寫出函數(shù)g(x)的單調(diào)區(qū)間,并求g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體ABCD﹣A'B'C'D'棱長為2,并且E,F分別是棱AA',CC'的中點(diǎn).
(Ⅰ)求證:平面BED'F⊥平面BB'D'D;
(Ⅱ)求直線A'B'與平面BED'F所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,為了較為合理地確定居民日常用水量的標(biāo)準(zhǔn),通過抽樣獲得了100位居民某年的月均用水量(單位:噸),右表是100位居民月均用水量的頻率分布表,根據(jù)右表解答下列問題:
分組 | 頻數(shù) | 頻率 |
[0,1) | 10 | 0.10 |
[1,2) | 0.20 | |
[2,3) | 30 | 0.30 |
[3,4) | 20 | |
[4,5) | 10 | 0.10 |
[5,6] | 10 | 0.10 |
合計(jì) | 100 | 1.00 |
(1)求右表中和的值;
(2)請(qǐng)將頻率分布直方圖補(bǔ)充完整,并根據(jù)直方圖估計(jì)該市每位居民月均用水量的眾數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知A=,b2-a2=c2.
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com