【題目】以邊長(zhǎng)為4的等比三角形的頂點(diǎn)以及邊的中點(diǎn)為左、右焦點(diǎn)的橢圓過兩點(diǎn).

1求該橢圓的標(biāo)準(zhǔn)方程;

2過點(diǎn)軸不垂直的直線交橢圓于兩點(diǎn),求證直線的交點(diǎn)在一條直線上.

【答案】12

【解析】

試題分析:

1先建立直角坐標(biāo)系,使橢圓方程為標(biāo)準(zhǔn)方程,則

2研究圓錐曲線的定值問題,一般方法為以算代證,即先求兩直線交點(diǎn)坐標(biāo),再確定交點(diǎn)所在定直線:由對(duì)稱性可知兩直線交點(diǎn)必在垂直于x軸的直線上,因此運(yùn)算目標(biāo)為求交點(diǎn)橫坐標(biāo)為定值,設(shè)的方程為,則 ,消去y得,再利用直線方程與橢圓方程聯(lián)立方程組,結(jié)合韋達(dá)定理可得,,代入化簡(jiǎn)得

試題解析:1 由題意可知兩焦點(diǎn)為,且,因此橢圓的方程為. 4分

2 當(dāng)不與軸重合時(shí),

設(shè)的方程為,且

聯(lián)立橢圓與直線消去可得,即,

設(shè),

-

,即.

當(dāng)軸重合時(shí),即的方程為,即,.

聯(lián)立消去可得.

綜上的交點(diǎn)在直線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

)若在區(qū)間上為增函數(shù),求的取值范圍;

)當(dāng)時(shí),證明:

)當(dāng)時(shí),斷方程是否有實(shí)數(shù)解,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,右頂點(diǎn)為,直線過原點(diǎn),且點(diǎn)x軸的上方,直線分別交直線于點(diǎn)、.

1)若點(diǎn),求橢圓的方程及ABC的面積;

2)若為動(dòng)點(diǎn),設(shè)直線的斜率分別為、.

試問是否為定值?若為定值,請(qǐng)求出;否則,請(qǐng)說明理由;

AEF的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(均為整數(shù))分成六組[40,50),[50,60) ...[90,100]后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ) 求成績(jī)落在[70,80)上的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;

(Ⅱ) 估計(jì)這次考試的及格率(60分及以上為及格)和平均分;

(Ⅲ) 設(shè)學(xué)生甲、乙的成績(jī)屬于區(qū)間[40,50),現(xiàn)從成績(jī)屬于該區(qū)間的學(xué)生中任選兩人,求甲、乙中至少有一人被選的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)事件A表示“關(guān)于的一元二次方程有實(shí)根”,其中為實(shí)常數(shù).

(Ⅰ)若為區(qū)間[0,5]上的整數(shù)值隨機(jī)數(shù),為區(qū)間[0,2]上的整數(shù)值隨機(jī)數(shù),求事件A發(fā)生的概率;

(Ⅱ)若為區(qū)間[0,5]上的均勻隨機(jī)數(shù),為區(qū)間[0,2]上的均勻隨機(jī)數(shù),求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)l,m是兩條不同的直線,α是一個(gè)平面,則下列命題正確的是( )

A. l⊥m,,則l⊥α

B. l⊥α,l∥m,則m⊥α

C. l∥α,,則l∥m

D. l∥αm∥α,則l∥m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù),其中.

1如果函數(shù)處的切線均為,求切線的方程及的值;

2如果曲線有且僅有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】劉老師是一位經(jīng)驗(yàn)豐富的高三理科班班主任,經(jīng)長(zhǎng)期研究,他發(fā)現(xiàn)高中理科班的學(xué)生的數(shù)學(xué)成績(jī)(總分150分)與理綜成績(jī)(物理、化學(xué)與生物的綜合,總分300分)具有較強(qiáng)的線性相關(guān)性,以下是劉老師隨機(jī)選取的八名學(xué)生在高考中的數(shù)學(xué)得分x與理綜得分y(如下表):

學(xué)生編號(hào)

1

2

3

4

5

6

7

8

數(shù)學(xué)分?jǐn)?shù)x

52

64

87

96

105

123

132

141

理綜分?jǐn)?shù)y

112

132

177

190

218

239

257

275

參考數(shù)據(jù)及公式:

(1)求出y關(guān)于x的線性回歸方程;

(2)若小汪高考數(shù)學(xué)110分,請(qǐng)你預(yù)測(cè)他理綜得分約為多少分?(精確到整數(shù)位);

(3)小金同學(xué)的文科一般,語(yǔ)文與英語(yǔ)一起能穩(wěn)定在215分左右.如果他的目標(biāo)是在

高考總分沖擊600分,請(qǐng)你幫他估算他的數(shù)學(xué)與理綜大約分別至少需要拿到多少分?(精確到整數(shù)位).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,棱形的邊長(zhǎng)為6, ,.將棱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn), .

(Ⅰ)求證:∥平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案