【題目】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過(guò)A作AE⊥CD,垂足為E,現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.
(1)求證:BC⊥面CDE;
(2)在線段AE上是否存在一點(diǎn)R,使得面BDR⊥面DCB,若存在,求出點(diǎn)R的位置;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)略;(2)
【解析】
(1)由已知中,垂足為,.根據(jù)線面垂直的判定定理,我們可得面.由線面垂直的定義,可得,又由,得到平面;(2)取中點(diǎn),連接、、、、,求出,解,可得,又由等腰中,為底邊的中點(diǎn),得到,進(jìn)而根據(jù)線面垂直判定定理,及面面垂直判定定理,得到結(jié)論.
(1)由已知得:,,
面.
,又,
面
(2)分析可知,點(diǎn)滿(mǎn)足時(shí),面面.
理由如下:取中點(diǎn),連接、、、、
容易計(jì)算,
在中
,
由平行四邊形性質(zhì)得,
所以
可知,
在中,,
.
又在中,,為中點(diǎn)
,
因?yàn)?/span>
面,因?yàn)?/span>,
面面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋子中有四張卡片,分別寫(xiě)有“瓷、都、文、明”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個(gè)字都取到記為事件,用隨機(jī)模擬的方法估計(jì)事件發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表“瓷、都、文、明”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估計(jì)事件發(fā)生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)在,很多人都喜歡騎“共享單車(chē)”,但也有很多市民并不認(rèn)可.為了調(diào)查人們對(duì)這種交通方式的認(rèn)可度,某同學(xué)從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20名市民,得到了一個(gè)市民是否認(rèn)可的樣本,具體數(shù)據(jù)如下列聯(lián)表:
附:,.
根據(jù)表中的數(shù)據(jù),下列說(shuō)法中,正確的是( )
A. 沒(méi)有95% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
B. 有99% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
C. 可以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
D. 可以在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校進(jìn)行理科、文科數(shù)學(xué)成績(jī)對(duì)比,某次考試后,各隨機(jī)抽取100名同學(xué)的數(shù)學(xué)考試成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布表如下.
分組 | 頻數(shù) | 頻率 | 分組 | 頻數(shù) | 頻率 | |
[135,150] | 8 | 0.08 | [135,150] | 4 | 0.04 | |
[120,135) | 17 | 0.17 | [120,135) | 18 | 0.18 | |
[105,120) | 40 | 0.4 | [105,120) | 37 | 0.37 | |
[90,105) | 21 | 0.21 | [90,105) | 31 | 0.31 | |
[75,90) | 12 | 0. 12 | [75,90) | 7 | 0.07 | |
[60,75) | 2 | 0.02 | [60,75) | 3 | 0.03 | |
總計(jì) | 100 | 1 | 總計(jì) | 100 | 1 |
理科 文科
(Ⅰ)根據(jù)數(shù)學(xué)成績(jī)的頻率分布表,求文科數(shù)學(xué)成績(jī)的中位數(shù)的估計(jì)值;(精確到0.01)
(Ⅱ)請(qǐng)?zhí)顚?xiě)下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為數(shù)學(xué)成績(jī)與文理科有關(guān):
數(shù)學(xué)成績(jī)120分 | 數(shù)學(xué)成績(jī)<120分 | 合計(jì) | |
理科 | |||
文科 | |||
合計(jì) | 200 |
參考公式與臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | ||
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正三棱柱中,底面的邊長(zhǎng)為2,側(cè)棱長(zhǎng)為4,是線段上一點(diǎn),是線段的中點(diǎn),為的中點(diǎn).以為正交基底,建立如圖所示的空間直角坐標(biāo)系.
(1)若,求直線和平面所成角的正弦值;
(2)若二面角的正弦值為,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的參數(shù)方程是 (t是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.曲線C的極坐標(biāo)方程為ρ=4cos(θ+ ).
(1)判斷直線l與曲線C的位置關(guān)系;
(2)過(guò)直線l上的點(diǎn)作曲線C的切線,求切線長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把函數(shù)的圖象沿軸向左平移個(gè)單位,縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)后得到函數(shù)的圖象,對(duì)于函數(shù)有以下四個(gè)判斷:
①該函數(shù)的解析式為;;
②該函數(shù)圖象關(guān)于點(diǎn)對(duì)稱(chēng);
③該函數(shù)在[,上是增函數(shù);
④函數(shù)在上的最小值為,則.
其中,正確判斷的序號(hào)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司制造兩種電子設(shè)備:影片播放器和音樂(lè)播放器.在每天生產(chǎn)結(jié)束后,要對(duì)產(chǎn)品進(jìn)行檢測(cè),故障的播放器會(huì)被移除進(jìn)行修復(fù). 下表顯示各播放器每天制造的平均數(shù)量以及平均故障率.
商品類(lèi)型 | 播放器每天平均產(chǎn)量 | 播放器每天平均故障率 |
影片播放器 | 3000 | 4% |
音樂(lè)播放器 | 9000 | 3% |
下面是關(guān)于公司每天生產(chǎn)量的敘述:
①每天生產(chǎn)的播放器有三分之一是影片播放器;
②在任何一批數(shù)量為100的影片播放器中,恰好有4個(gè)會(huì)是故障的;
③如果從每天生產(chǎn)的音樂(lè)播放器中隨機(jī)選取一個(gè)進(jìn)行檢測(cè),此產(chǎn)品需要進(jìn)行修復(fù)的概率是0.03.
上面敘述正確的是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)已知函數(shù)f(x)=|2x﹣3|﹣2|x|,若關(guān)于x不等式f(x)≤|a+2|+2a恒成立,求實(shí)數(shù)a的取值范圍; (Ⅱ)已知正數(shù)x,y,z滿(mǎn)足2x+y+z=1,求證 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com