【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,他們分別記錄了31日至35日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

31

32

33

34

35

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y()

23

25

30

26

16

(1)請根據(jù)32日至34日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

【答案】(1) ;(2)可靠

【解析】

 試題(1)先代公式求,再求平均數(shù),求得(2)代人數(shù)據(jù)得到理想值,再與實驗值比較,確定誤差都是1,最后下結(jié)論

試題解析: (1)=12,=27,

iyi=977,=434,

=27-×12=-3.

故所求的線性回歸方程為yx-3.

(2)x=10時,y×10-3=22;

x=8時,y×8-3=17,

與檢驗數(shù)據(jù)的誤差都是1,滿足題意,被認為(1)中所得的線性回歸方程是可靠的.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(12分)已知集合A={x|-2<x<0},B={x|y=}

(1)求(RA)∩B;

(2)若集合C={x|a<x<2a+1}且CA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學參加一項射擊比賽游戲,其中任何一人每射擊一次擊中目標得2分,未擊中目標得0分.若甲、乙兩人射擊的命中率分別為 和P,且甲、乙兩人各射擊一次得分之和為2的概率為 .假設(shè)甲、乙兩人射擊互不影響,則P值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班50名學生在一次百米測試中,成績?nèi)拷橛?/span>13 s19 s之間,將測試結(jié)果分成如下六組:[13,14),[14,15),[15,16),[16,17),[17,18),[18,19].如圖是按上述分組方法得到的頻率分布直方圖,設(shè)成績小于17 s的學生人數(shù)占全班人數(shù)的百分比為x,成績在[15,17)中的學生人數(shù)為y,則從頻率分布直方圖中可以分析出xy分別為 (   )

A. 90%,35B. 90%,45

C. 10%,35D. 10%,45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且滿足sinA+sinB=[cosA﹣cos(π﹣B)]sinC.
(1)試判斷△ABC的形狀,并說明理由;
(2)若a+b+c=1+ ,試求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種產(chǎn)品的廣告費用支出(萬元)與銷售(萬元)之間有如下的對應(yīng)數(shù)據(jù):

2

4

5

6

8

30

40

60

50

70

若由資料可知呈線性相關(guān)關(guān)系,試求:

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)據(jù)此估計廣告費用支出為10萬元時銷售收入的值.

(參考公式: ,.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解今年某校高三畢業(yè)班準備報考飛行員學生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(Ⅰ)求該校報考飛行員的總?cè)藬?shù);
(Ⅱ)以這所學校的樣本數(shù)據(jù)來估計全省的總體數(shù)據(jù),若從全省報考飛行員的同學中(人數(shù)很多)任選三人,設(shè)X表示體重超過60公斤的學生人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C所對的邊為a、b、c,且 asinC﹣c(2+cosA)=0.
(1)求角A的大小;
(2)若△ABC的最大邊長為 ,且sinC=2sinB,求最小邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足sin2B+sin2C=sin2A+2sinBsinCsin(B+C). (Ⅰ)求角A的大;
(Ⅱ)若a=2,求△ABC面積的最大值.

查看答案和解析>>

同步練習冊答案