【題目】2020年寒假期間,某高中決定深入調(diào)查本校學(xué)生寒假期間在家學(xué)習(xí)情況,并將依據(jù)調(diào)查結(jié)果對(duì)相應(yīng)學(xué)生提出針對(duì)性學(xué)習(xí)建議.現(xiàn)從本校高一、高二、高三三個(gè)年級(jí)中分別隨機(jī)選取30,4575人,然后再?gòu)倪@些學(xué)生中抽取10人,進(jìn)行學(xué)情調(diào)查.

1)若采用分層抽樣抽取10人,分別求高一、高二、高三應(yīng)抽取的人數(shù).

2)若被抽取的10人中,有6人每天學(xué)時(shí)超過(guò)7小時(shí),有4人每天學(xué)時(shí)不足4小時(shí),現(xiàn)從這10人中,再隨機(jī)抽取4人做進(jìn)一步調(diào)查.

i)記事件A被抽取的4人中至多有1人學(xué)時(shí)不足4小時(shí),求事件A發(fā)生的概率;

ii)用ξ表示被抽取的4人中學(xué)時(shí)不足4小時(shí)的人數(shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

【答案】1)高一、高二、高三應(yīng)抽取的人數(shù)分別為2人,3人,5人;(2)(i;(ii)見(jiàn)解析,

【解析】

1)總數(shù)為30+45+75=150,從這些學(xué)生中抽取10人,根據(jù)分層抽樣法求出高一、高二、高三應(yīng)抽取的人數(shù)即可;

2)(i)記事件A被抽取的4人中至多有1人學(xué)時(shí)不足4小時(shí),記事件B被抽取的4人中恰有1人學(xué)時(shí)不足4小時(shí),記事件C被抽取的4人中恰有0人學(xué)時(shí)不足4小時(shí),則由P(A)P(BC)P(B)+P(C),求出概率即可;

ii)隨機(jī)變量ξ表示被抽取的4人中學(xué)時(shí)不足4小時(shí)的人數(shù),則ξ0,123,4,求出隨機(jī)變量ξ的分布列和數(shù)學(xué)期望即可.

1)從本校高一、高二、高三三個(gè)年級(jí)中分別隨機(jī)選取30,4575人,

30+45+75=150,

從這些學(xué)生中抽取10人,根據(jù)分層抽樣法,高一應(yīng)抽取102人,高二應(yīng)抽取10人,高三應(yīng)抽取10人,

故高一、高二、高三應(yīng)抽取的人數(shù)分別為2人,3人,5人;

2)(i)記事件A被抽取的4人中至多有1人學(xué)時(shí)不足4小時(shí),記事件B被抽取的4人中恰有1人學(xué)時(shí)不足4小時(shí),記事件C被抽取的4人中恰有0人學(xué)時(shí)不足4小時(shí),則P(A)P(BC)P(B)+P(C)

ii)隨機(jī)變量ξ表示被抽取的4人中學(xué)時(shí)不足4小時(shí)的人數(shù),則ξ0,1,2,34,

,

,,

,

隨機(jī)變量ξ的分布列如下:

ξ

0

1

2

3

4

P

E(ξ)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱柱ABC-A1B1C1的底面是正三角形,側(cè)面BB1C1C是矩形,MN分別為BC,B1C1的中點(diǎn),PAM上一點(diǎn),過(guò)B1C1P的平面交ABE,交ACF.

1)證明:AA1MN,且平面A1AMNEB1C1F;

2)設(shè)O為△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直線B1E與平面A1AMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時(shí),,給出下列命題:

①當(dāng)時(shí),;

②函數(shù)2個(gè)零點(diǎn);

的解集為;

,都有.

其中真命題的個(gè)數(shù)為(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十五巧板、又稱益智圖,為清朝浙江省德清知縣童葉庚在同治年間所發(fā)明,它能拼出草木、花果、鳥(niǎo)獸、魚(yú)蟲(chóng)、文字等圖案.十五巧板由十五塊板組成一個(gè)大正方形(如圖1),其中標(biāo)號(hào)為2,3,45的小板均為等腰直角三角形,圖2是用十五巧板拼出的2019年生肖豬的圖案,則從生肖豬圖案中任取一點(diǎn),該點(diǎn)恰好取自陰影部分中的概率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)正方形ABCDCDEF有一條公共邊CD,且BCF是等邊三角形,則異面直線ACDF所成角的余弦值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=2|x+2|+|x3|

1)求不等式fx≥8的解集;

2)若a0,b0,且函數(shù)Fx)=fx)﹣3a2b有唯一零點(diǎn)x0,證明:fx0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓過(guò)點(diǎn),離心率為,分別是橢圓的左、右頂點(diǎn),過(guò)右焦點(diǎn)且斜率為的直線與橢圓相交于兩點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)記的面積分別為、,若,求的值;

3)記直線、的斜率分別為、,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年底,湖北省武漢市等多個(gè)地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者.為及時(shí)有效地對(duì)疫情數(shù)據(jù)進(jìn)行流行病學(xué)統(tǒng)計(jì)分析,某地研究機(jī)構(gòu)針對(duì)該地實(shí)際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無(wú)接觸史),無(wú)武漢旅行史(無(wú)接觸史),有武漢旅行史(有接觸史)和無(wú)武漢旅行史(有接觸史),統(tǒng)計(jì)得到以下相關(guān)數(shù)據(jù).

1)請(qǐng)將列聯(lián)表填寫(xiě)完整:

有接觸史

無(wú)接觸史

總計(jì)

有武漢旅行史

27

無(wú)武漢旅行史

18

總計(jì)

27

54

2)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系?

附:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象如圖所示,給出四個(gè)函數(shù):①,②,③,④,又給出四個(gè)函數(shù)的圖象,則正確的匹配方案是( ).

A.①-甲,②-乙,③-丙,④-丁B.②-甲,①-乙,③-丙,④-丙

C.①-甲,③-乙,④-丙,②-丁D.①-甲,④-乙,③-丙,②-丁

查看答案和解析>>

同步練習(xí)冊(cè)答案