精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C的焦點分別為F1(﹣2 ,0)和F2(2 ,0),長軸長為6,設直線y=x+2交橢圓C于A、B兩點.求:線段AB的中點坐標.

【答案】解:設橢圓C的方程為 + =1, 由題意a=3,c=2 ,
b= =1.(3分)
∴橢圓C的方程為 +y2=1.
聯立方程組 ,消y得10x2+36x+27=0,
因為該二次方程的判別式△>0,所以直線與橢圓有兩個不同的交點,
設A(x1 , y1),B(x2 , y2),則x1+x2=﹣
故線段AB的中點坐標為(﹣ ,
【解析】先求橢圓的方程,設橢圓C的方程為 + =1,根據條件可知a=3,c=2 ,同時求得b= ,得到橢圓方程,由直線y=x+2交橢圓C于A、B兩點,兩方程聯立,由韋達定理求得其中點坐標.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖1所示,在邊長為4的菱形ABCD中,∠DAB=60°,點E,F分別是邊CD,CB的中點,EF∩AC=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖2所示五棱錐P﹣ABFED,且AP= ,
(1)求證:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G為BC的中點.
(1)求證:AB∥平面DEG;
(2)求證:BD⊥EG;
(3)求二面角C﹣DF﹣E的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,邊長為4的正方形ABCD所在平面與正三角形PAD所在平面互相垂直,M,Q分別為PC,AD的中點.
(1)求證:PA∥平面MBD;
(2)求二面角P﹣BD﹣A的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以下四個命題中,其中正確的個數為( ) ①命題“若x2﹣3x+2=0,則x=1”的逆否命題為“若x≠1,則x2﹣3x+2=0”;
②“ ”是“cos2α=0”的充分不必要條件;
③若命題 ,則p:x∈R,x2+x+1=0;
④若p∧q為假,p∨q為真,則p,q有且僅有一個是真命題.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 的圖象為C,則如下結論中正確的是(寫出所有正確結論的編號).
①圖象C關于直線 對稱;
②圖象C關于點 對稱;
③函數f(x)在區(qū)間 內是減函數;
④把函數 的圖象上點的橫坐標壓縮為原來的一半(縱坐標不變)可以得到圖象C.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知正項數列{an}的前n和為Sn , 且 與(an+1)2的等比中項.
(1)求證:數列{an}是等差數列;
(2)若 ,數列{bn}的前n項和為Tn , 求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知關于x,y的方程C:x2+y2﹣2x﹣4y+m=0
(1)當方程C表示圓時,求m的取值范圍;
(2)若圓C與直線l1:x+2y﹣4=0相交于M,N兩點,且|MN|= ,求m的值;
(3)在(2)條件下,若圓C上存在四點到直線l2:x﹣2y+b=0的距離均為 ,試求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個工廠生產某種產品每年需要固定投資 萬元,此外每生產 件該產品還需要增加投資 萬元,年產量為 件.當 時,年銷售總收入為 萬元;當 時,年銷售總收入為 萬元.記該工廠生產并銷售這種產品所得的年利潤為 萬元。
(1)求 (萬元)關于 (件)的函數關系式;
(2)該工廠的年產量為多少件時,所得年利潤最大?并求出最大值.(年利潤=年銷售總收入年總投資)

查看答案和解析>>

同步練習冊答案