【題目】已知圓的圓心在直線上,且與直線相切于點(diǎn),

1)求圓方程;

2)是否存在過(guò)點(diǎn)的直線與圓交于兩點(diǎn),且的面積是為坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2).

【解析】試題分析:1過(guò)切點(diǎn)且與垂直的直線為,與直線聯(lián)立,解得圓心為,由此能求出圓的半徑,從而可求圓的方程;(2當(dāng)斜率不存在時(shí),直線方程為,滿足題意;當(dāng)斜率存在時(shí),設(shè)直線的方程為,由點(diǎn)到直線距離公式結(jié)合已知條件推導(dǎo)出不存在這樣的實(shí)數(shù)從而所求的直線方程為.

試題解析:(1)設(shè)圓心坐標(biāo)為,則圓的方程為:,又與相切,則有,解得:,,所以圓的方程為:;

2)由題意得:當(dāng)存在時(shí),設(shè)直線,設(shè)圓心到直線的距離為,

則有,進(jìn)而可得:

化簡(jiǎn)得:,無(wú)解;

當(dāng)不存在時(shí),,則圓心到直線的距離,那么,,滿足題意,所以直線的方程為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為實(shí)數(shù),函數(shù), .

1)求的單調(diào)區(qū)間與極值;

2)求證:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在正方體ABCD﹣A1B1C1D1中,E為棱DD1的中點(diǎn)
(1)求證:BD1∥平面AEC
(2)求證:AC⊥BD1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修44:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知直線l1 ),拋物線C t為參數(shù)).以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求直線l1 和拋物線C的極坐標(biāo)方程;

(Ⅱ)若直線l1 和拋物線C相交于點(diǎn)A(異于原點(diǎn)O),過(guò)原點(diǎn)作與l1垂直的直線l2,l2和拋物線C相交于點(diǎn)B(異于原點(diǎn)O),求△OAB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.若直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,將曲線上所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的一半,縱坐標(biāo)不變,然后再向右平移一個(gè)單位得到曲線

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)已知直線與曲線交于兩點(diǎn),點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a<1,集合A={x|x<a﹣2或x>﹣a},集合B={x|cos(xπ)=1},全集U=R.
(1)當(dāng)a=0時(shí),求(UA)∩B;
(2)若(UA)∩B恰有2個(gè)元素,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的圓心坐標(biāo),直線被圓截得弦長(zhǎng)為。

(Ⅰ)求圓的方程;

(Ⅱ)從圓外一點(diǎn)向圓引切線,求切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù);

1)求的值;

2)過(guò)是否存在既是曲線的切線,又是曲線的切線?如果存在,求出直線方程;若果不存在請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某大學(xué)聯(lián)盟的自主招生考試中,報(bào)考文史專業(yè)的考生參加了人文基礎(chǔ)學(xué)科考試科目語(yǔ)文數(shù)學(xué)的考試.某考場(chǎng)考生的兩科考試成績(jī)數(shù)據(jù)統(tǒng)計(jì)如下圖所示,本次考試中成績(jī)?cè)?/span>內(nèi)的記為,其中語(yǔ)文科目成績(jī)?cè)?/span>內(nèi)的考生有10人.

1)求該考場(chǎng)考生數(shù)學(xué)科目成績(jī)?yōu)?/span>的人數(shù);

2)已知參加本考場(chǎng)測(cè)試的考生中,恰有2人的兩科成績(jī)均為.在至少一科成績(jī)?yōu)?/span>的考生中,隨機(jī)抽取2人進(jìn)行訪談,求這2人的兩科成績(jī)均為的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案