(本小題共13分)

已知數(shù)列中,,其前項和為,且當(dāng)時,

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)求數(shù)列的通項公式;

(Ⅲ)若,令,記數(shù)列的前項和為.設(shè)是整數(shù),問是否存在正整數(shù),使等式成立?若存在,求出和相應(yīng)的值;若不存在,請說明理由.

(共13分)

解:(Ⅰ)當(dāng)時,,

     化簡得,

     又由,可推知對一切正整數(shù)均有,

     ∴數(shù)列是等比數(shù)列.            ---------------- 4分

(Ⅱ)由(Ⅰ)知等比數(shù)列的首項為1,公比為,  

         ∴

當(dāng)時,

              ----------8分

     (Ⅲ)當(dāng)時,,此時

          

              ,

           又

           ∴

           ,

           當(dāng)時,

  

,則等式,不是整數(shù),不符合題意.

,則等式,

是整數(shù),∴是5的因數(shù).

∴當(dāng)且僅當(dāng)時,是整數(shù), ∴

綜上所述,當(dāng)且僅當(dāng)時,存在正整數(shù),使等式成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共13分)

已知函數(shù)

   (I)若x=1為的極值點,求a的值;

   (II)若的圖象在點(1,)處的切線方程為,

(i)求在區(qū)間[-2,4]上的最大值;

(ii)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆北京市豐臺區(qū)高三年級第二學(xué)期統(tǒng)一練習(xí)理科數(shù)學(xué) 題型:解答題


(本小題共13分)
已知函數(shù)
(Ⅰ)若處取得極值,求a的值;
(Ⅱ)求函數(shù)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市高三壓軸文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題共13分)

已知向量,設(shè)函數(shù).

(Ⅰ)求函數(shù)上的單調(diào)遞增區(qū)間;

(Ⅱ)在中,,分別是角,的對邊,為銳角,若,,的面積為,求邊的長.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市豐臺區(qū)高三下學(xué)期統(tǒng)一練習(xí)數(shù)學(xué)理卷 題型:解答題

(本小題共13分)

某商場在店慶日進行抽獎促銷活動,當(dāng)日在該店消費的顧客可參加抽獎.抽獎箱中有大小完全相同的4個小球,分別標(biāo)有字“生”“意”“興”“隆”.顧客從中任意取出1個球,記下上面的字后放回箱中,再從中任取1個球,重復(fù)以上操作,最多取4次,并規(guī)定若取出“隆”字球,則停止取球.獲獎規(guī)則如下:依次取到標(biāo)有“生”“意”“興”“隆”字的球為一等獎;不分順序取到標(biāo)有“生”“意”“興”“隆”字的球,為二等獎;取到的4個球中有標(biāo)有“生”“意”“興”三個字的球為三等獎.

(Ⅰ)求分別獲得一、二、三等獎的概率;

(Ⅱ)設(shè)摸球次數(shù)為,求的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市宣武區(qū)2010年高三第一次質(zhì)量檢測數(shù)學(xué)(文)試題 題型:解答題

(本小題共13分)
已知函數(shù)
(I)當(dāng)a=1時,求函數(shù)的最小正周期及圖象的對稱軸方程式;
(II)當(dāng)a=2時,在的條件下,求的值.

查看答案和解析>>

同步練習(xí)冊答案