【題目】為了選拔優(yōu)秀學(xué)生參加廣州市高二級(jí)數(shù)學(xué)競(jìng)賽.現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取了5次,記錄如下(單位:分):

甲  83  81  79  95  92 

乙  92  85  75  88  90 

(1)甲乙兩人分?jǐn)?shù)的極差分別是多少?并用莖葉圖表示這兩組數(shù)據(jù).

(2)甲乙兩人這5次成績(jī)的平均分和方差各是多少?從穩(wěn)定性的角度考慮,你認(rèn)為選派哪位學(xué)生參加比賽較合適?

【答案】(1)甲極差為16;乙的極差為17;(2)甲的平均分為86,方差為40 ,乙的平均分為86,方差為35.6 ,乙比較合適.

【解析】試題分析:(1)根據(jù)極差定義寫(xiě)出極差,由所給數(shù)據(jù)畫(huà)出莖葉圖;

(2)計(jì)算平均數(shù),方差可以比較那個(gè)穩(wěn)定。

試題解析:

(1)甲極差為:16;乙的極差為:17;

莖葉圖:

(2)甲的平均分為86,方差為40,乙的平均分為86,方差為35.6,乙的方差小于甲的方差,所以選乙比較合適

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面 平面,BC//平面PAD, ,.

求證:(1) 平面;

(2)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)統(tǒng)計(jì),某物流公司每天的業(yè)務(wù)中,從甲地到乙地的可配送的貨物量的頻率分布直方圖,如圖所示,將頻率視為概率,回答以下問(wèn)題.

(1)求該物流公司每天從甲地到乙地平均可配送的貨物量;

(2)該物流公司擬購(gòu)置貨車(chē)專(zhuān)門(mén)運(yùn)營(yíng)從甲地到乙地的貨物,一輛貨車(chē)每天只能運(yùn)營(yíng)一趟,每輛車(chē)每

趟最多只能裝載40 件貨物,滿(mǎn)載發(fā)車(chē),否則不發(fā)車(chē)。若發(fā)車(chē),則每輛車(chē)每趟可獲利1000 元;若未發(fā)車(chē),

則每輛車(chē)每天平均虧損200 元。為使該物流公司此項(xiàng)業(yè)務(wù)的營(yíng)業(yè)利潤(rùn)最大,該物流公司應(yīng)該購(gòu)置幾輛貨

車(chē)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為拋物線(xiàn)的焦點(diǎn),過(guò)的直線(xiàn)交于兩點(diǎn), 中點(diǎn),點(diǎn)軸的距離為, .

(1)求的值;

(2)過(guò)分別作的兩條切線(xiàn) .請(qǐng)選擇軸中的一條,比較到該軸的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)結(jié)論:
①在△ABC中,若sinA>sinB,則必有cosA<cosB;
②在△ABC中,若a,b,c成等比數(shù)列,則角B的取值范圍為
③等比數(shù)列{an}中,若a3=2,a7=8,則a5=±4;
④等差數(shù)列{an}的前n項(xiàng)和為Sn , S10<0且S11=0,滿(mǎn)足Sn≥Sk對(duì)n∈N*恒成立,則正整數(shù)k構(gòu)成集合為{5,6}
⑤若關(guān)于x的不等式(a2﹣1)x2﹣(a﹣1)x﹣1<0的解集為R,則a的取值范圍為
其中正確結(jié)論的序號(hào)是 . (填上所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位附近只有甲、乙兩個(gè)臨時(shí)停車(chē)場(chǎng),它們各有個(gè)車(chē)位,為了方便市民停車(chē),某互聯(lián)網(wǎng)停車(chē)公司對(duì)這兩個(gè)停車(chē)場(chǎng),在某些固定時(shí)刻的剩余停車(chē)位進(jìn)行記錄,如下表:

時(shí)間

停車(chē)場(chǎng)

點(diǎn)

點(diǎn)

點(diǎn)

點(diǎn)

點(diǎn)

點(diǎn)

甲停車(chē)場(chǎng)

乙停車(chē)場(chǎng)

如果表中某一時(shí)刻剩余停車(chē)位數(shù)低于該停車(chē)場(chǎng)總車(chē)位數(shù)的,那么當(dāng)車(chē)主驅(qū)車(chē)抵達(dá)單位附近時(shí),該公司將會(huì)向車(chē)主發(fā)出停車(chē)場(chǎng)飽和警報(bào).

(1)假設(shè)某車(chē)主在以上六個(gè)時(shí)刻抵達(dá)單位附近的可能性相同,求他收到甲停車(chē)場(chǎng)飽和警報(bào)的概率;

(2)從這六個(gè)時(shí)刻中任選一個(gè)時(shí)刻,求甲停車(chē)場(chǎng)比乙停車(chē)場(chǎng)剩余車(chē)位數(shù)少的概率;

(3)當(dāng)乙停車(chē)場(chǎng)發(fā)出飽和警報(bào)時(shí),求甲停車(chē)場(chǎng)也發(fā)出飽和警報(bào)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿(mǎn)分100分,成績(jī)均為不低于40分的整數(shù))分成六段: , ,…, ,得到如圖所示的頻率分布直方圖.

(1)求圖中實(shí)數(shù)的值;

(2)若該校高一年級(jí)共有640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);

(3)若從數(shù)學(xué)成績(jī)?cè)?/span>兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示, 矩形所在的平面, 分別是的中點(diǎn).

(1)求證: 平面

(2)求證: .

(3)當(dāng)滿(mǎn)足什么條件時(shí),能使平面成立?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)隨著我國(guó)在教育科研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國(guó)內(nèi)企業(yè)的國(guó)際競(jìng)爭(zhēng)力得到大幅提升.伴隨著國(guó)內(nèi)市場(chǎng)增速放緩,國(guó)內(nèi)有實(shí)力企業(yè)紛紛進(jìn)行海外布局,第二輪企業(yè)出海潮到來(lái).如在智能手機(jī)行業(yè),國(guó)產(chǎn)品牌已在趕超國(guó)外巨頭,某品牌手機(jī)公司一直默默拓展海外市場(chǎng),在海外共設(shè)多個(gè)分支機(jī)構(gòu),需要國(guó)內(nèi)公司外派大量后、后中青年員工.該企業(yè)為了解這兩個(gè)年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從后和后的員工中隨機(jī)調(diào)查了位,得到數(shù)據(jù)如下表:

愿意被外派

不愿意被外派

合計(jì)

合計(jì)

(Ⅰ)根據(jù)調(diào)查的數(shù)據(jù),是否有以上的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”,并說(shuō)明理由;

(Ⅱ)該公司舉行參觀(guān)駐海外分支機(jī)構(gòu)的交流體驗(yàn)活動(dòng),擬安排名參與調(diào)查的后、后員工參加.后員工中有愿意被外派的人和不愿意被外派的人報(bào)名參加,從中隨機(jī)選出人,記選到愿意被外派的人數(shù)為;后員工中有愿意被外派的人和不愿意被外派的人報(bào)名參加,從中隨機(jī)選出人,記選到愿意被外派的人數(shù)為,求的概率

參考數(shù)據(jù):

(參考公式:,其中).

查看答案和解析>>

同步練習(xí)冊(cè)答案