【題目】若函數(shù)y=ax在區(qū)間[0,2]上的最大值和最小值的和為5,則函數(shù)y=logax在區(qū)間[ ,2]上的最大值和最小值之差是(
A.1
B.3
C.4
D.5

【答案】B
【解析】解:∵函數(shù)y=ax在區(qū)間[0,2]上的最大值和最小值的和為5,
∴1+a2=5,
解得a=2,a=﹣2(舍去),
∴y=log2x在區(qū)間[ ,2]上為增函數(shù),
∴ymax=log22=1,ymin=log2 =﹣2,
∴1﹣(﹣2)=3,
故選:B
【考點精析】本題主要考查了函數(shù)的最值及其幾何意義的相關知識點,需要掌握利用二次函數(shù)的性質(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調性的判斷函數(shù)的最大(小)值才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子裝有六張卡片,上面分別寫著如下六個定義域為的函數(shù):

(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個新函數(shù),求所得函數(shù)是奇函數(shù)的概率;

(2)現(xiàn)從盒子中進行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進行,求抽取次數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga|x+1|(a>0且a≠1),當x∈(0,1)時,恒有f(x)<0成立,則函數(shù)g(x)=loga(﹣ x2+ax)的單調遞減區(qū)間是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,以BC上一點O為圓心,以OB為半徑的圓交AB于點M,交BC于點N.

(1)求證:BABM=BCBN;
(2)如果CM是⊙O的切線,N為OC的中點,當AC=3時,求AB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】觀察下列等式:
1﹣ =
1﹣ + = +
1﹣ + + = + +

據(jù)此規(guī)律,第n個等式可為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x2ex
(1)求f(x)的單調區(qū)間;
(2)若x∈[﹣2,2]時,不等式f(x)<m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】化簡求值
(1)計算: ﹣( 0+0.2 ×( 4;
(2)已知x +x =3,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x||x﹣a|<4},B={x|x2﹣4x﹣5>0}.
(1)若a=1,求A∩B;
(2)若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3﹣x2+4x+3,若在區(qū)間[﹣2,1]上,f(x)≥0恒成立,則a的取值范圍是(
A.[﹣6,﹣2]
B.
C.[﹣5,﹣3]
D.[﹣4,﹣3]

查看答案和解析>>

同步練習冊答案