【題目】在平面直角坐標系中,曲線的方程為,以為極點,軸的正半軸為極軸建立極坐標系,曲線是圓心在極軸上且經(jīng)過極點的圓,射線與曲線交于點.

1)求曲線的參數(shù)方程,的極坐標方程;

2)若是曲線上的兩點,求的值.

【答案】1為參數(shù)),;

2.

【解析】

1)根據(jù)橢圓的標準方程直接寫出橢圓的參數(shù)方程即可,利用圓的幾何性質可以求出圓的極坐標方程,把點的坐標代入極坐標方程中,求出圓的半徑,即求出圓的極坐標方程;

2)根據(jù)極坐標方程與直角坐標方程的轉換公式直接求出橢圓的極坐標方程,把兩點坐標代入橢圓的極坐標方程中,最后利用同角的三角函數(shù)關系式求值即可.

(1)曲線的參數(shù)方程為為參數(shù)),

設圓的半徑為,則圓的方程為,

將點代入得,

解得

∴圓的極坐標方程為,

(2)曲線的極坐標方程為

,代入得,,

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,左、右焦點分別為、,拋物線的焦點恰好是該橢圓的一個頂點.

1)求橢圓的方程;

2)已知圓的切線(直線的斜率存在且不為零)與橢圓相交于兩點,那么以為直徑的圓是否經(jīng)過定點?如果是,求出定點的坐標;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,四點,中恰有三點在橢圓.

1)求的方程;

2)設的短軸端點分別為,直線兩點,交軸于點,若,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求在區(qū)間上的最大值和最小值;

2)若對恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市從年甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機抽取個,并按、、分組,得到頻率分布直方圖如圖,假設甲、乙兩種酸奶獨立銷售且日銷售量相互獨立.

1)寫出頻率分布直方圖甲中的的值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為、,試比較的大;(只需寫出結論)

2)估計在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個高于箱且另一個不高于箱的概率;

3)設表示在未來天內甲種酸奶的日銷售量不高于箱的天數(shù),以日留住量落入各組的頻率為概率,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,長軸長為4,分別為橢圓的左,右焦點,點是橢圓上的任意一點,面積的最大為,且取得最大值時為鈍角.

1)求橢圓的標準方程;

2)已知圓,點為圓上任意一點,過點的切線分別交橢圓兩點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,雙曲線的右頂點為A,右焦點為F,點B在雙曲線的右支上,矩形OFBD與矩形AEGF相似,且矩形OFBD與矩形AEGF的面積之比為21,則該雙曲線的離心率為

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。

(1)寫出直線l的普通方程和曲線C的直角坐標方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,昆明加大了特色農業(yè)建設,其中花卉產(chǎn)業(yè)是重要組成部分.昆明斗南毗鄰滇池東岸,是著名的花都,有全國10支鮮花7支產(chǎn)自斗南之說,享有金斗南的美譽.為進一步了解鮮花品種的銷售情況,現(xiàn)隨機抽取甲、乙兩戶斗南花農,對其連續(xù)5日的玫瑰花日銷售情況進行跟蹤調查,將日銷售量作為樣本繪制成莖葉圖如下,單位:扎(20支/扎).

1)求甲、乙兩戶花農連續(xù)5日的日均銷售量,并比較兩戶花農連續(xù)5日銷售量的穩(wěn)定性;

2)從兩戶花農連續(xù)5日的銷售量中各隨機抽取一個,求甲的銷售量比乙的銷售量高的概率·

查看答案和解析>>

同步練習冊答案