精英家教網(wǎng)如圖,在三棱錐D-ABC中,已知BC丄AD,BC=2,AD=6,AB+BD=AC+CD=10,則三棱錐D一ABC的體積的最大值是
 
分析:過BC作與AD垂直的平面,交AD于E,過E作BC的垂線,垂足為F,則V=
1
3
S△BCE×AD,進而可分析出當BE取最大值時,EF取最大值時,三棱錐D-ABC的體積也取最大值,利用橢圓的幾何意義及勾股定理,求出EF的最大值,可得答案.
解答:解:過BC作與AD垂直的平面,交AD于E
過E作BC的垂線,垂足為F,如圖所示:
精英家教網(wǎng)
∵BC=2,AD=6,
則三棱錐D-ABC體積V=
1
3
S△BCE×(AE+DE)=V=
1
3
S△BCE×AD=
1
3
×
1
2
•BC•EF×AD=2EF
故EF取最大值時,三棱錐D-ABC的體積也取最大值
即BE取最大值時,三棱錐D-ABC的體積也取最大值
在△ABD中,動點B到A,D兩點的距離和為10,
故B在以AD為焦點的橢圓上,
此時a=5,c=3,故BE的最大值為b=
a2-c2
=4
此時EF=
BE2-(
BC
2
)2
=
15

故三棱錐D一ABC的體積的最大值是2
15

故答案為:2
15
點評:本題考查的知識點是棱錐的體積,其中將求棱錐體積的最大值,轉化為求橢圓上動點到長軸的距離最遠是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點,F(xiàn)在棱AC上,且AF=3FC.
(1)求三棱錐D-ABC的表面積;
(2)求證AC⊥平面DEF;
(3)若M為BD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐D-ABC中,△ADC,△ACB均為等腰直角三角形AD=CD=
2
,∠ADC=∠ACB=90°,M為線段AB的中點,側面ADC⊥底面ABC.
(Ⅰ)求證:BC⊥平面ACD;
(Ⅱ)求異面直線BD與CM所成角的余弦值;
(Ⅲ)求二面角A-CD-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

如圖,在三棱錐DABC中,已知△BCD是正三角

形,AB⊥平面BCD,ABBCaEBC的中點,

F在棱AC上,且AF=3FC

(1)求三棱錐DABC的表面積;

(2)求證AC⊥平面DEF;

(3)若MBD的中點,問AC上是否存在一點N,

使MN∥平面DEF?若存在,說明點N的位置;若不

存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:正定中學2010高三下學期第一次考試(數(shù)學理) 題型:解答題

(本小題滿分12分)
如圖,在三棱錐DABC中,已知△BCD是正三角
形,AB⊥平面BCD,ABBCaEBC的中點,
F在棱AC上,且AF=3FC
(1)求三棱錐DABC的表面積;
(2)求證AC⊥平面DEF
(3)若MBD的中點,問AC上是否存在一點N
使MN∥平面DEF?若存在,說明點N的位置;若不
存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年浙江省高二下學期期中考試數(shù)學2-4 題型:解答題

如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點,F(xiàn)在棱AC上,且AF=3FC.

(1)求證AC⊥平面DEF;

(2)若M為BD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.

(3)求平面ABD與平面DEF所成銳二面角的余弦值。

 

查看答案和解析>>

同步練習冊答案