【題目】已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖象上,記與的等差中項(xiàng)為。
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和;
(Ⅲ)設(shè)集合,等差數(shù)列的任意一項(xiàng),其中是中的最小數(shù),且,求的通項(xiàng)公式。
【答案】(I);(II);(III)。
【解析】
試題分析:(I)根據(jù)點(diǎn)都在函數(shù)的圖象上,可得,再寫一式,兩式相減,即可求得數(shù)列的通項(xiàng)公式;(II)先確定數(shù)列的通項(xiàng),再利用錯(cuò)位相減法求數(shù)列的和;(III)先確定,再確定是公差為的倍數(shù)的等差數(shù)列,利用,可得,由此可得的通項(xiàng)公式。
試題解析:(I)點(diǎn)都在函數(shù)的圖像上,,當(dāng)時(shí), 當(dāng)n=1時(shí),滿足上式,所以數(shù)列的通項(xiàng)公式為。
(II)∵為與的等差中項(xiàng)
∴
①
由①×4,得
①-②得:
,
。
(III)∵
∴
∵,是中的最小數(shù),。
是公差為的倍數(shù)的等差數(shù)列,。
又,
,解得.所以,
設(shè)等差數(shù)列的公差為,則,
,∴。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P={x|x2﹣x﹣2≤0},Q={x|log2(x﹣1)≤2},則(RP)∩Q等于( )
A.(2,5]
B.(﹣∞,﹣1]∪[5,+∞]
C.[2,5]
D.(﹣∞,﹣1]∪(5,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)要考察某企業(yè)生產(chǎn)的袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從500袋牛奶中抽取6袋進(jìn)行檢驗(yàn),利用隨機(jī)數(shù)表法抽取樣本時(shí),先將500袋牛奶按000,001,…,499進(jìn)行編號(hào),使用下面隨機(jī)數(shù)表中各個(gè)5位數(shù)組的后3位,選定第7行第5組數(shù)開始,取出047作為抽取的代號(hào),繼續(xù)向右讀,隨后檢驗(yàn)的5袋牛奶的號(hào)碼是(下面摘取了某隨機(jī)數(shù)表第7行至第9行)( )
84421 75331 57245 50688 77047 44767 21763
35025 83921 20676 63016 47859 16955 56719
98105 07185 12867 35807 44395 23879 33211
A. 245,331,421,025,016 B. 025,016,105,185,395
C. 395,016,245,331,185 D. 447,176,335,025,212
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A. 圓柱的側(cè)面展開圖是一個(gè)矩形
B. 圓錐過軸的截面是一個(gè)等腰三角形
C. 平行于圓臺(tái)底面的平面截圓臺(tái),截面是圓面
D. 直角三角形繞它的一邊旋轉(zhuǎn)一周形成的曲面圍成的幾何體是圓錐
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本y(萬元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可以近視地表示為,已知此生產(chǎn)線的年產(chǎn)量最大為210噸.
(1)求年產(chǎn)量為多少噸時(shí),生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(2)若每噸產(chǎn)品平均出廠價(jià)為40萬元,那么當(dāng)年產(chǎn)量為多少噸時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)(滿足:
(1),
(2)在區(qū)間內(nèi)有最大值無最小值,
(3)在區(qū)間內(nèi)有最小值無最大值,
(4)經(jīng)過。
(1)求的解析式;
(2)若,求值;
(3)不等式的解集不為空集,求實(shí)數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察以下5個(gè)等式:
-1=-1
-1+3=2
-1+3-5=-3
-1+3-5+7=4
-1+3-5+7-9=-5
……
根據(jù)以上式子規(guī)律:
(1)寫出第6個(gè)等式,并猜想第n個(gè)等式;(n∈N*)
(2)用數(shù)學(xué)歸納法證明上述所猜想的第n個(gè)等式成立.(n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)若函數(shù)的圖象與軸相鄰兩個(gè)交點(diǎn)間的距離為,且圖像的一條對(duì)稱軸是直線。
(1)求的值;
(2)求函數(shù)的單調(diào)增區(qū)間;
(3)畫出函數(shù)在區(qū)間上的圖像。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—1:幾何證明選講
如圖,四邊形內(nèi)接于⊙,過點(diǎn)作⊙的切線交的延長(zhǎng)線于,已知.
證明:
(1);
(2).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com