精英家教網 > 高中數學 > 題目詳情

【題目】

11分制乒乓球比賽,每贏一球得1分,當某局打成10:10平后,每球交換發(fā)球權,先多得2分的一方獲勝,該局比賽結束.甲、乙兩位同學進行單打比賽,假設甲發(fā)球時甲得分的概率為0.5,乙發(fā)球時甲得分的概率為0.4,各球的結果相互獨立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個球該局比賽結束.

1)求PX=2);

2)求事件X=4且甲獲勝的概率.

【答案】(1);(20.1

【解析】

(1)本題首先可以通過題意推導出所包含的事件為“甲連贏兩球或乙連贏兩球”,然后計算出每種事件的概率并求和即可得出結果;

(2)本題首先可以通過題意推導出所包含的事件為“前兩球甲乙各得分,后兩球均為甲得分”,然后計算出每種事件的概率并求和即可得出結果。

(1)由題意可知,所包含的事件為“甲連贏兩球或乙連贏兩球”

所以

(2)由題意可知,包含的事件為“前兩球甲乙各得分,后兩球均為甲得分”

所以

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數fx)=|xa|+|x|a0).

1)若不等式fx)﹣| x|≥4x的解集為{x|x≤1},求實數a的值;

2)證明:fx

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知汽車站每天上午之間都恰有一輛長途汽車經過,但是長途車到站的時間是隨機的,且每輛車的到站時間是相互獨立的,汽車到站后即停即走,據統(tǒng)計汽車到站規(guī)律為:

現有一位旅客在到達汽車站,問:

(1)該旅客候車時間不超過20分鐘的概率;

(2)記該旅客的候車時間為,求的概率分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若數列滿足:對于任意均為數列中的項,則稱數列為“ 數列”.

(1)若數列的前項和,求證:數列為“ 數列”;

(2)若公差為的等差數列為“ 數列”,求的取值范圍;

(3)若數列為“ 數列”,,且對于任意,均有,求數列的通項公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:

最高

氣溫

[10,

15)

[15,

20)

[20,

25)

[25,

30)

[30,

35)

[35,

40)

天數

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列.

(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量n(單位:瓶)為多少時,Y的數學期望達到最大值?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.

(1)證明:坐標原點O在圓M上;

(2)設圓M過點P(4,-2),求直線l與圓M的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)過橢圓的左焦點的直線與橢圓交于兩點,直線過坐標原點且與直線的斜率互為相反數.若直線與橢圓交于兩點且均不與點重合,設直線軸所成的銳角為,直線軸所成的銳角為,判斷的大小關系并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數同時滿足:

①對于定義域上的任意,恒有;

②對于定義域上的任意,,恒有

則稱函數為“理想函數”.給出下列三個函數:(123,其中能被稱為“理想函數”的有( )個.

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案