【題目】古印度“漢諾塔問題”:一塊黃銅平板上裝著三根金銅石細(xì)柱,其中細(xì)柱上套著個(gè)大小不等的環(huán)形金盤,大的在下、小的在上.將這些盤子全部轉(zhuǎn)移到另一根柱子上,移動(dòng)規(guī)則如下:一次只能將一個(gè)金盤從一根柱子轉(zhuǎn)移到另外一根柱子上,不允許將較大盤子放在較小盤子上面.若柱上現(xiàn)有個(gè)金盤(如圖),將柱上的金盤全部移到柱上,至少需要移動(dòng)次數(shù)為( )

A.B.C.D.

【答案】B

【解析】

設(shè)細(xì)柱上套著個(gè)大小不等的環(huán)形金盤,至少需要移動(dòng)次數(shù)記為,則,利用該遞推關(guān)系可求至少需要移動(dòng)次數(shù).

設(shè)細(xì)柱上套著個(gè)大小不等的環(huán)形金盤,至少需要移動(dòng)次數(shù)記為.

要把最下面的第個(gè)金盤移到另一個(gè)柱子上,則必須把上面的個(gè)金盤移到余下的一個(gè)柱子上,故至少需要移動(dòng)次.

把第個(gè)金盤移到另一個(gè)柱子上后,再把個(gè)金盤移到該柱子上,故又至少移動(dòng)次,所以,

,故,,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

2)若時(shí),求證:對于任意的,均有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,直線l,P為直線l上一點(diǎn),且點(diǎn)P在極軸上方OP為一邊作正三角形逆時(shí)針方向,且面積為

Q點(diǎn)的極坐標(biāo);

外接圓的極坐標(biāo)方程,并判斷直線l外接圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個(gè)蜜柚進(jìn)行測重,其質(zhì)量分別在,,(單位:克)中,其頻率分布直方圖如圖所示.

1)按分層抽樣的方法從質(zhì)量落在的蜜柚中抽取5個(gè),再從這5個(gè)蜜柚中隨機(jī)抽取2個(gè),求這2個(gè)蜜柚質(zhì)量均小于2000克的概率;

2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個(gè)蜜柚等待出售,某電商提出兩種收購方案:

A. 所有蜜柚均以40/千克收購;

B. 低于2250克的蜜柚以60/個(gè)收購,高于或等于2250克的以80/個(gè)收購.

請你通過計(jì)算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年,依托用戶碎片化時(shí)間的娛樂需求、分享需求以及視頻態(tài)的信息負(fù)載力,短視頻快速崛起;與此同時(shí),移動(dòng)閱讀方興未艾,從側(cè)面反應(yīng)了人們對精神富足的一種追求,在習(xí)慣了大眾娛樂所帶來的短暫愉悅后,部分用戶依舊對有著傳統(tǒng)文學(xué)底蘊(yùn)的嚴(yán)肅閱讀青睞有加.

某讀書APP抽樣調(diào)查了非一線城市M和一線城市N100名用戶的日使用時(shí)長(單位:分鐘),繪制成頻率分布直方圖如下,其中日使用時(shí)長不低于60分鐘的用戶記為活躍用戶

1)請?zhí)顚懸韵?/span>列聯(lián)表,并判斷是否有995%的把握認(rèn)為用戶活躍與否與所在城市有關(guān)?

活躍用戶

不活躍用戶

合計(jì)

城市M

城市N

合計(jì)

2)以頻率估計(jì)概率,從城市M中任選2名用戶,從城市N中任選1名用戶,設(shè)這3名用戶中活躍用戶的人數(shù)為,求的分布列和數(shù)學(xué)期望.

3)該讀書APP還統(tǒng)計(jì)了20184個(gè)季度的用戶使用時(shí)長y(單位:百萬小時(shí)),發(fā)現(xiàn)y與季度()線性相關(guān),得到回歸直線為,已知這4個(gè)季度的用戶平均使用時(shí)長為12.3百萬小時(shí),試以此回歸方程估計(jì)2019年第一季度()該讀書APP用戶使用時(shí)長約為多少百萬小時(shí).

附:,其中

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若點(diǎn)的極坐標(biāo)為,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個(gè)命題:

中,成立的充要條件;

②當(dāng)時(shí),有;

③已知 是等差數(shù)列的前n項(xiàng)和,若,則

④若函數(shù)上的奇函數(shù),則函數(shù)的圖象一定關(guān)于點(diǎn)成中心對稱.其中所有正確命題的序號為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校進(jìn)行了一次創(chuàng)新作文大賽,共有100名同學(xué)參賽,經(jīng)過評判,這100名參賽者的得分都在之間,其得分的頻率分布直方圖如圖,則下列結(jié)論錯(cuò)誤的是( )

A.得分在之間的共有40人

B.從這100名參賽者中隨機(jī)選取1人,其得分在的概率為0.5

C.估計(jì)得分的眾數(shù)為55

D.這100名參賽者得分的中位數(shù)為65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的離心率為,且橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.過點(diǎn)的直線交橢圓兩點(diǎn),為坐標(biāo)原點(diǎn).

1)若直線過橢圓的上頂點(diǎn),求的面積;

2)若分別為橢圓的左、右頂點(diǎn),直線,,的斜率分別為,,,求的值.

查看答案和解析>>

同步練習(xí)冊答案